

National COVID Cohort Collaborative (N3C)

5/26/2020

This pandemic highlights urgent needs

- ML algorithms (diagnosis, triage, predictive, etc.)
- Best practices for resource allocation
- Drug discovery
- Reduced disease severity
- Coordinate our efforts to maximize efficiency

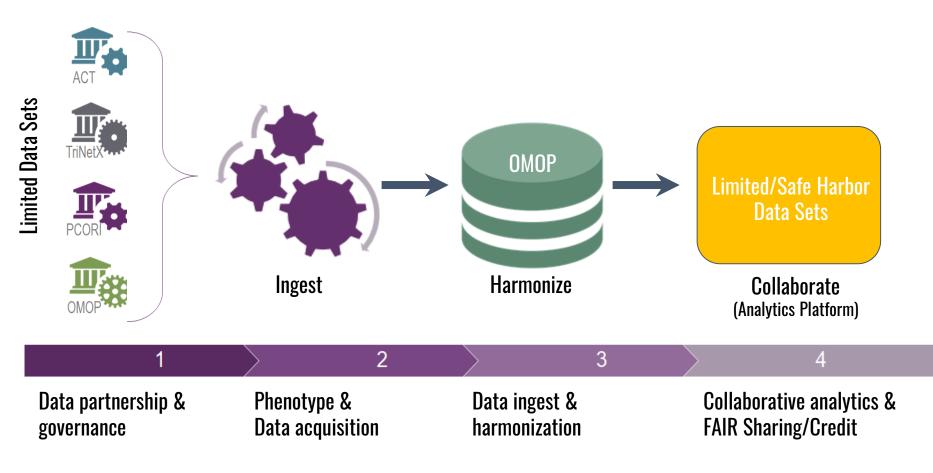
All these things require the creation of a comprehensive clinical data set

Introduction

- **Rapid**, collection of clinical, laboratory, and diagnostic data from hospitals and healthcare plans, at the peak of the pandemic, and as the pandemic evolves to understand COVID-19
- Critical design elements:
 - Speed is critical. Need to collect data now, before the pandemic abates
 - Make access to the data fast and easy, and do not prescribe the analysis
 - As data models are developed, test/validate with ongoing data collection
 - Evolve to support clinical trials

Introducing the National COVID Cohort Collaborative (N3C)

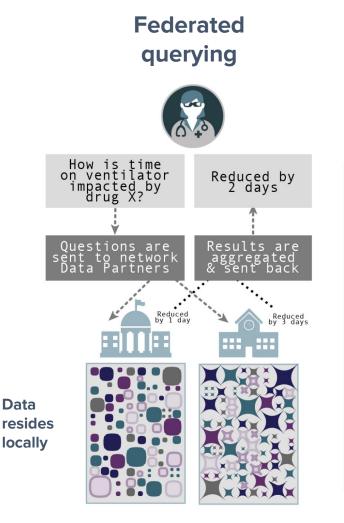
- A centralized, secure portal for hosting patient-level COVID-19 clinical data and deploying and evaluating methods and tools for clinicians, researchers, and healthcare
- A partnership among CTSA program institutions, distributed clinical data networks (e.g. PCORnet, OHDSI, ACT/i2b2, and TriNetX), and many other clinical partners and collaborators


It is being (rapidly) organized:

Five community workstreams:

- Data Partnership & Governance
- Phenotype & Data Acquisition
- Data Ingestion & Harmonization
- Collaborative Analytics
- Synthetic Data

N3C Overview

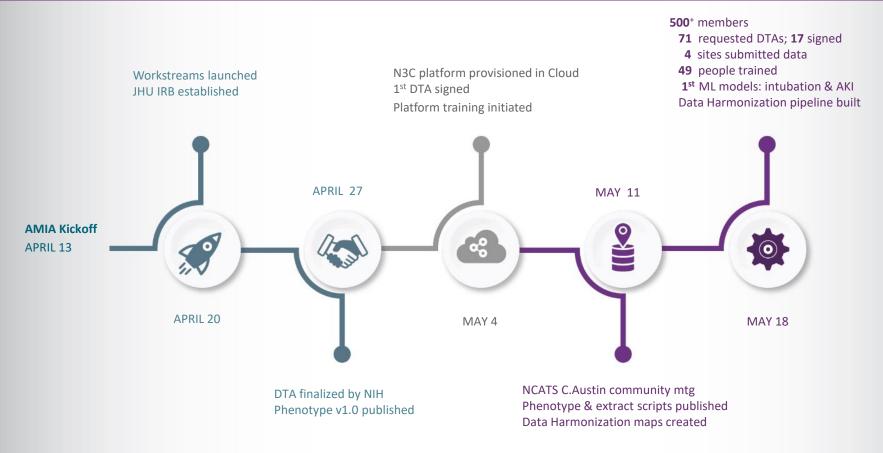


National Cohort Collaborative

"But, am I not already sending data?"


N3C is synergistic with distributed data networks!

Centralizing patient-level data makes it possible to ask qualitatively different and more powerful questions, but is only possible due to each institution having their data in a common data model.


Centralized analytics patients under age 60, which factors are most predictive of severe outcomes? Collaboratively_build, te<u>st</u>, and <u>réfine</u> algorithmic clas Identify novel associátions

Ιn

N3C Progress

National COVID Collaborative

Partners, Teams, Collaborators

NCATS Chris Austin Ioni Rutter Mike Kurilla **Clare Schmitt** Ken Gersing Xinzhi Zhang

Frica Rosemond Sam Bozzette Lili Portilla Chris Dillon Penny Burgoon Emilv Marti Meredith Temple-O'Connor Sam Jonson Christine Cutillo Nicole Garbarini

NIH & HHS Partners NCI Janelle Cortner

Stephen Hewitt Denise Warzel

FDA Mitra Rocca Scott Gideon Wei Chen

NIDDK **Robert Star**

NIGMS

Ming Lee NCATS ITRB Sam Michael

Mariam Deacy Gary Berkson Josephine Kennedy Usman Sheikh Mark Backus Nam Ngo

Amit Virakatmath

Sulochana Nunna

Keats Kirsch

Ke Wang

Kalle Virtaneva

Rafael Fuentes Reid Simon Biju Mathew Tim Mierzwa

OHSU/OSU Melissa Haendel Anita Walden Julie McMurry Moni Munoz-Torres Andrea Volz Connor Cook **Racquel Dietz** Andrew Neumann Rich Lorimor

CD2H

Sage Bionetworks Justin Guinnev

James Eddy

U of Iowa: Dave Fichmann Alexis Graves

Northwestern: Kristi Holmes Justin Starren Lisa O'Keefe

Washington U. Philip Payne Albert Lai Tom Dillon

CD2H

U. Of Washington Adam Wilcox Liz Zampino

Johns Hopkins U Chris Chute Tricia Francis

Jax Labs Peter Robinson

Scripps Chunlei Wu

Teams

Governance Sage Bionetworks John Wilbanks

Christine Suver

Data Harmonization JHU

Davera Gabriel Stephanie Hong Harold Lehmann Tanner Zhang Richard Zhu

SAMVIT

Smita Hastak **Charles Yaghmour**

NCATS

Raju Hemadri Sai Manjula

Sandeep Naredla

Teams **Phenotype & Acquisition** Emily Pfaff, UNC

ACT

Michele Morris. Pitt Shyam Visweswaran, Pitt Shawn Murphy HRD

OMOP

Kristin Kostka, IQVIA Karthik Natarajan, Columbia Clair Blacketer JNJ

PCORI

Kellie Walters. UNC Robert Bradford, UNC Marshall Clark, UNC Adam Lee, UNC Evan Colmenares, UNC

TriNetX Matvey Palchuk Lora Lingrev

Teams Analytics

Warren Kibbe, Duke Heidi Sprait, UTMB Tell Bennett, U of CO Andrew Williams. Tufts Joel Saltz, SBU Janos Hajagos, SBU **Richard Moffitt, SBU** Tahsin Kurc, SBU

Palantir

Nabeel Oureshi Andrew Girvin Amin Manna

Synthetic Data

Regenstrief Peter Embi

MDClone Daniel Blumenthal Hovav Dror Luz Erez Josh Rubel Microsoft

Allison T Rodriguez Kenji Takeda

Nancy Nurthen

Adeptia

N3C Community Workstreams

National Center for Advancing Translational Sciences

National COVID Cohort **C**ollaborative

Data Partnerships and Governance

Workstream GOAL

- Develop partnerships with organizations and their IRBs.
- Execute a common data use agreement for contributing to and accessing the COVID-19 dataset.
- Establish a Data Access Committee for reviewing access requests.

John Wilbanks, Sage Bionetworks

Data Partnership and Governance

Data Transfer Agreement

- Facilitates the transfer of Limited Data Set into the NCATS cloud
- 71 have been sent, 14 have been signed, 4 data sets transferred, 2 data sets ingested

Data Use Agreement: Goal is broad access:

- COVID-Related research only
- Open platform to all Credentialed researchers
- Security: Activities in the N3C Enclave are recorded and can be audited
- Disclosure of research results to the N3C Enclave for the public good
- Contributor Attribution
- No download of data

Data Access Committee: [in formation]

Central IRB

National

COVID Cohort Collaborative

Phenotype and Data Acquisition

Workstream GOAL

Emily Pfaff, UNC

- Establish a common COVID-19 phenotype that will define the data pull for the limited access dataset
- Create a "white glove" service to obtain data from each site by building easily adaptable scripts for each clinical data model
- Ingest data into a secure location as per approved institutional agreement

Phenotype and Data Acquisition

Dual-purpose workstream:

- 1. Work with the community to write and maintain a computable phenotype for COVID-19.
- 2. Write and maintain a series of scripts to execute the computable phenotype in each of four common data models (CDMs): OMOP, i2b2/ACT, PCORnet, and TriNetX.

What does it look like to run our process locally?

Run our phenotype code to define your COVID-19 cohort.

- 2x per week if possible
- Code available for all data models, multiple database systems

Run our lightweight local data quality checks.

Checks only for "showstopper" issues to prevent back-andforth after submission. Run our extract code, which will dump out data for that cohort to a series of flat files.

 Export code available as a Python script or plain SQL files.

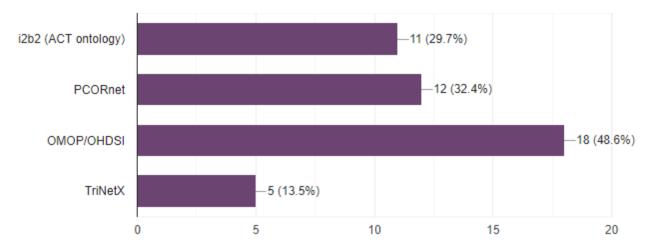
Zip up the flat files and transmit to N3C.

- Transmit via SFTP
- Data will be picked up by the Data Harmonization team for integration into repository.

Support is available for all parts of this process!

Latest phenotype: <u>covid.cd2h.org/phenotype</u> Documentation: <u>covid.cd2h.org/phenotype-wiki</u>

All specifications and software shared on GitHub



Why Choose OMOP for N3C?

If your institution was to submit a set of covid-specific patient data to a central repository using one of these data models, which data model would be optimal? (Check multiple only if there is a "tie" for first place.)

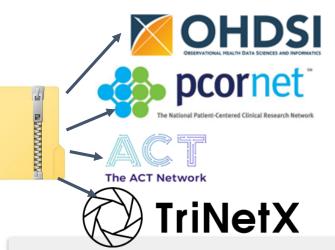
37 responses

Note: Respondents may support more than one common data model in their environment.

Data Ingestion and Harmonization

Workstream GOAL

 Ingest limited data sets that are available in their native data formats such as PCORnet, ACT and OMOP and harmonize them into common data model based on OMOP standard



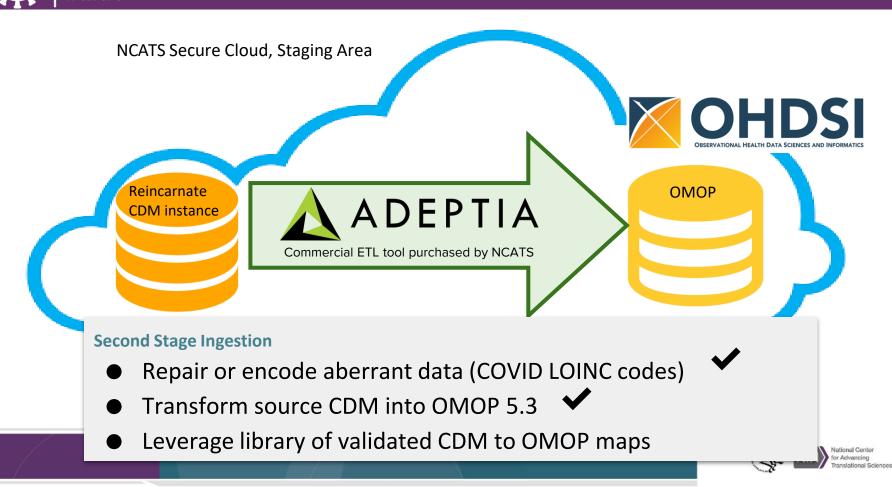
Christopher Chute, Johns Hopkins University

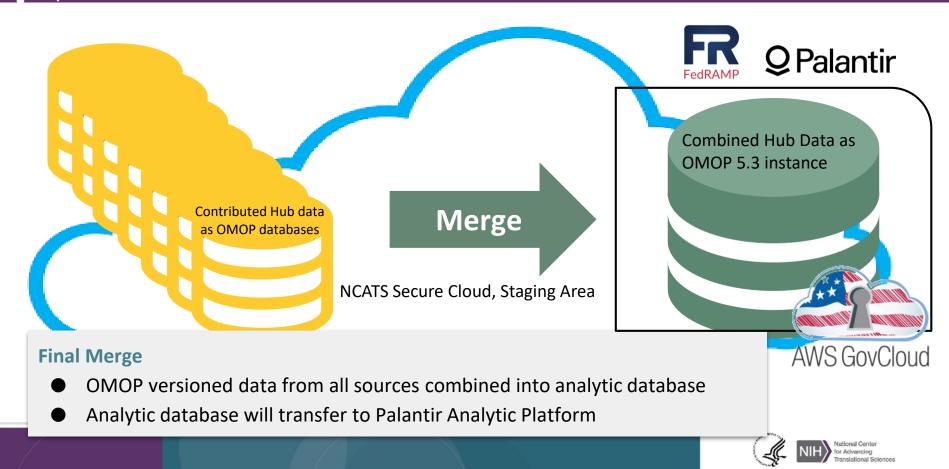
Common Data Model Harmonization

		Verification			Validation			Total				
	Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass
Plausibility	159	21	180	88%	283	0	283	100%	442	21	463	95%
Conformance	637	34	671	95%	104	0	104	100%	741	34	775	96%
Completeness	369	17	386	96%	5	10	15	33%	374	27	401	93%
Total	1165	72	1237	94%	392	10	402	98%	1557	82	1639	95%
	ata	a Q	ual	lity [Das	hb	oa	rd (s	har	ed	wit	h sit

First Stage Ingestion

- Unpack Zip'ed csv Files. Check data manifests
- Reconstitute into native CDM formats
- Hybrid Data Quality checks adapting OHDSI Data Quality Dashboard




National

Cohort

Data Harmonization: Secure Integration

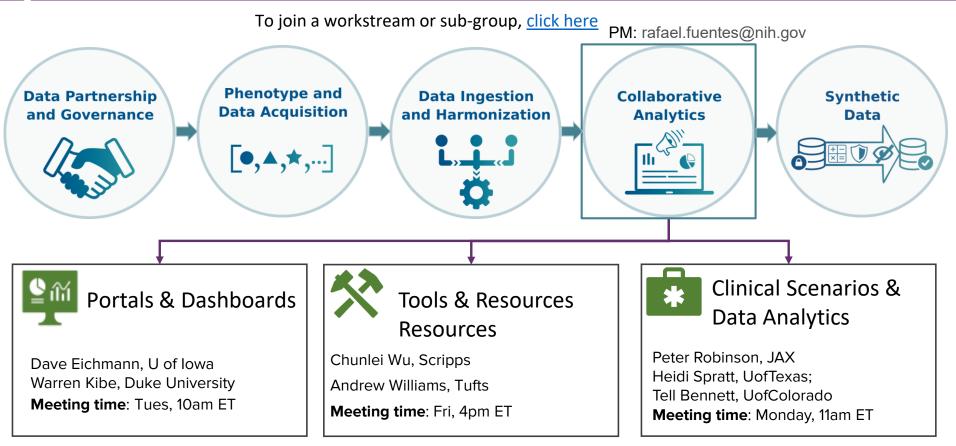
Collaborative Analytics

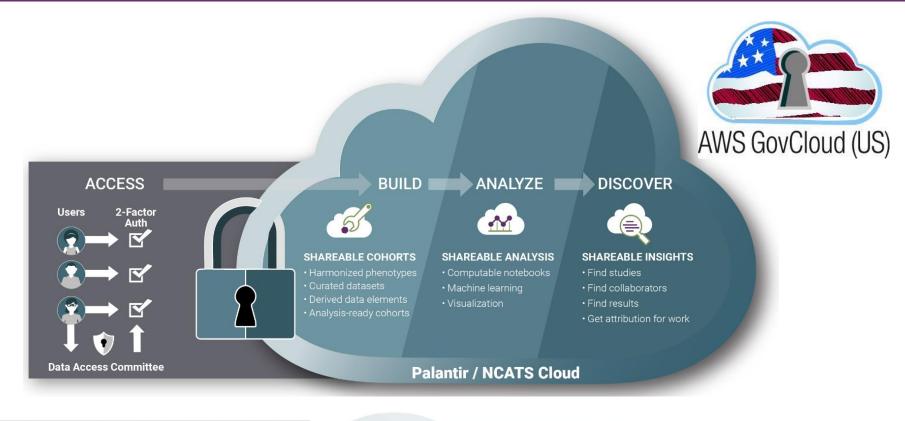
Justin Guinney,Joel Saltz, MD,PhDPhD

Sage Bionetworks

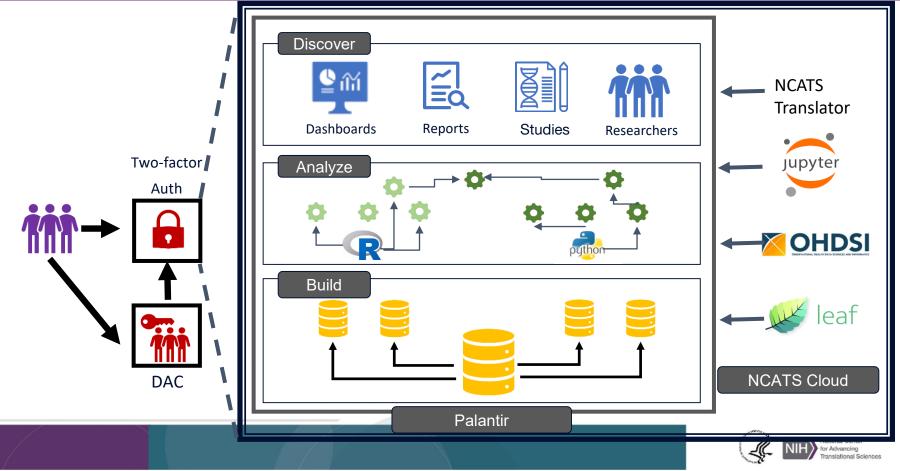
Stony Brook

Workstream GOAL


- Work collaboratively to generate insights related to COVID-19 from the harmonized limited access dataset
- Experts in AI, ML, and other technologies will assist in reviewing and iterating on portal architecture to ensure fit-forpurpose implementation
- Design UX and apps for diverse analytical users (researchers, informaticians, clinicians)



Collaborative Analytics


Collaborative Analytics - N3C Secure Data Enclave

COVID Cohort Collaborative Analytics - N3C Secure Data Enclave

COVID COND Cohort Collaborative Clinical Phenotype & Predictive Analytics

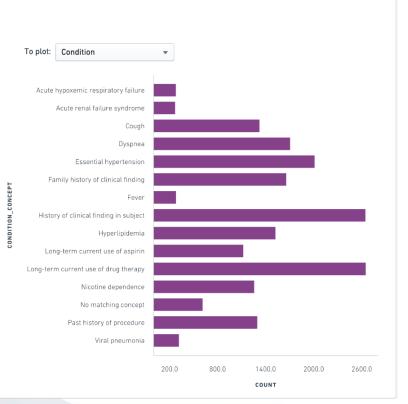
Recently Achieved Milestone: Predictive Analytics Demo on N3C Platform

- Demonstration of N3C/Palantir Foundry Analytic Platform using **real world data**
- Limited Data Set from Wash U. ingested into the N3C platform
- N3C Platform is hosted in AWS GovCloud and is FedRAMP Moderate certified
- N3C Platform preserves attribution, reproducibility and provenance
- Clinical early warning/clinical decision support
- Machine learning demo: Random Forest Model trained on WashU data predicting
 - Invasive ventilation (intubation) one day heads up
 - o AKI 5 days out

N3C Analytics Platform

cted tab	of Health	Collaborative		Show Fil
ey Statistics IC Project Statistics / Metrics so fai	r			
COVID-19 Positive Patients 2,062	Total Patients 17,123	Sites Signed DTA	Sites Data Ingested	Rows of Data
Procedures	Lab Results 8.2m	Visits 246k	Observations 5.3m	Drug Exposures

National

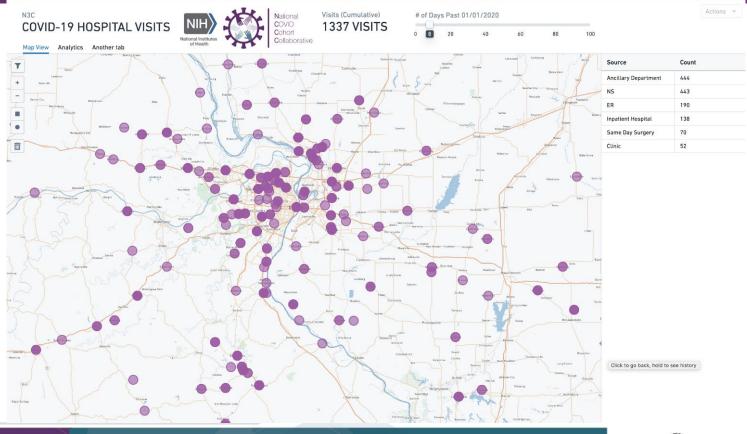

Collaborative

Cohort Characterisation

Cohort characteristics

Summary statistics for WUSTL patients

	COVID	Non-COVIE	Overall
	(N=1161)	(N=5904)	(N=7065)
Gender			
Male	1059	7022	2141
Female	1091	8069	9160
Null		3	3
Age			
0 - 17	46	2095	2141
18 - 29	303	2043	2346
30 - 49	616	3638	4254
50 - 64	584	3488	4072
65+	523	3498	4021
Race			_
White	614	8110	8724
Asian	127	1225	1352
American Indian or Alaska Native	5	27	32
Black or African American	1083	3693	4776
Other Pacific Islander	1	7	8
Null	306	1958	2264
Ethnicity			
Not Hispanic or Latino	1926	13910	15836
Hispanic or Latino	165	984	1149
Unknown	59	200	259



Time/Space Vector - Live Example

Predictive Modeling: Risk of Ventilation and AKI

Random forest model trained on 200 COVID-19 patients, 100 of whom required ventilation, and 100 did not. It performs well, with an AUC of 0.85. Shown are the top features in the model predicting ventilator usage as an outcome.

Using these features, we are able to see separation in a PCA plot between the ventilator population in orange and the non-ventilator population in blue.

Synthetic Data

Philip Payne, PhD

Atul Butte, MD, PhD

Washington University

UCSF

Workstream GOAL

 Pilot the generation of synthetic EHR data from the N3C cohort for broad data sharing and community analytics

Synthetic Data: Objectives

- 1) Create a "pipeline" that can be used to generate computationally derived synthetic clinical data
- 2) Demonstrate the pipeline by populating it with data from a group of 3-5 pilot sites
- Provision access to resulting synthetic data sets for evaluation and use by N3C participants and broader research and innovation community
 - Conduct targeted verification and validation studies informed by "real world" use cases (comparing results of analyses between source and synthetic data)
- 4) Plan for future expansion of collaborative, commensurate with overall growth of N3C and community needs

N3C Community Workstreams

NCATS N3C website: ncats.nih.gov/n3c CD2H N3C website: covid.cd2h.org Onboarding to N3C: bit.ly/cd2h-onboarding-form

National COVID Cohort Collaborative

National COVID Cohort Collaborative

Question and Answers

National Center for Advancing Translational Sciences

Thank You

