

OHDSI community efforts on COVID-19 disease natural history

Patrick Ryan, PhD

Janssen Research and Development
Columbia University Irving Medical Center

Talita Duarte Salles, PhD IDIAPJGol

Dani Prieto-Alhambra, MD PhD
Oxford University

Ross Williams Erasmus MC

on behalf of OHDSI community

Agenda

- Welcome FDA/RUF team 5 min
- OHDSI community overview Patrick
- Characterization of patients hospitalized with COVID-19- Dani
- Prediction of COVID outcomes in symptomatic patients- Ross
- Project CHARYBDIS: Large-scale disease natural history of COVID progression- Talita
- Q&A All 15 min

OHDSI: a global open science community

OHDSI Collaborators:

- **>**2,770 users
- ➤ 25 workgroups
- ➤ 18,700 posts on 3,250 topics

OHDSI Network:

- ▶152 databases
- ≥18 countries
- ➤ approx. 600M patient records

OHDSI's Mission: To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care

Open community data standard: OMOP CDM

Complementary evidence to inform the patient journey

Who We Are V Latest News Standards Software Tools Methods Book of OHDSI V Research Resources V Join the Journey

The Journey Newsletter V Past Events Upcoming Events

Home > COVID-19 Updates Page

COVID-19 Updates Page

The Observational Health Data Sciences and Informatics (OHDSI) international community will host a COVID-19 virtual study-a-thon this week (March 26-29) to inform healthcare decision-making in response to the current global pandemic.

Day 4

Early Call: Video Global Call: Video

FINAL CALL: Use This Link To Watch Live (regardless of whether you registered)

Please take a look at the early calls, but we're going to save the exciting study-a-thon updates for our final call tonight! This link will work for anybody, regardless of whether you registered for the study-a-thon. We are so excited to share our studies and early

results with the world. Please share this link with people in your networks, so they can see the power of global collaboration in the OHDSI community.

Day 3 Updates

OHDSI Kicks Off COVID-19 Research Agenda With 4-Day International Virtual Study-A-Thon

What have we done?

In only **88** hours, we have:

- Convened 351 participants brought together
 from 30 countries
- Held 12 Global Huddles, >100 collaborator
 calls, >13,000 chat messages
- Engaged 15 concurrent channels
- Reviewed > 10,000 publications
- Drafted **9** protocols
- Released 13 study packages
- Designed **355** cohort definitions
- Assembled a distributed data network with
 - **37** partners signed on to execute studies

3 things that we did in 4 days together that nobody has ever done before

- First large-scale characterization of COVID patients in US and Asia
- First prediction model externally validated on COVID patients to support triage to 'flatten the curve'
- Largest study ever conducted on the safety of hydroxychloroquine

Open collaboration requires FULL transparency in every step of the research process

- Study registered in ENCEPP with full protocol posted: http://www.encepp.eu/encepp/viewResource.htm?id=34498
- Phenotype definitions and analysis specifications are both human-readable and computerexecutable using ATLAS against any OMOP CDM: https://atlas.ohdsi.org/#/estimation/cca/6
- Analysis source code freely available and directly downloadable: https://github.com/ohdsi-studies/Covid19EstimationHydroxychloroquine
- Manuscript posted on Medrxiv while awaiting peer-review: https://www.medrxiv.org/content/10.1101/2020.04.08.20054551v1
- All analysis results available for public exploration through interactive R shiny application: http://evidence.ohdsi.org/Covid19EstimationHydroxychloroquine

An international characterisation of patients hospitalised with COVID-19 and a comparison with those previously hospitalised with influenza

Prof Dani Prieto-Alhambra
University of Oxford

Open collaboration requires FULL transparency in every step of the research process

- Protocol and analysis source code freely available and directly downloadable: https://github.com/ohdsi-studies/Covid19HospitalizationCharacterization
- Phenotype definitions are both human-readable and computer-executable using ATLAS against any OMOP CDM: https://atlas.ohdsi.org/
- Manuscript posted on Medrxiv while awaiting peer-review: https://www.medrxiv.org/content/10.1101/2020.04.22.20074336v1
- All analysis results available for public exploration through interactive R shiny application: http://evidence.ohdsi.org/Covid19CharacterizationHospitalization/
- The study is a living evidence repository: any data partners can execute analysis and share aggregate results at any point, including updates as data accumulate

KEY FINDINGS

 26,074 (US: 2,477, South Korea: 5,172, Spain: 18,425) included

 49,331 summary characteristics extracted, summarised in an interactive web app (next slides)

Search

Comments (I)

An international characterisation of patients hospitalised with COVID-19 and a comparison with those previously hospitalised with influenza

Dedward Burn, Seng Chan You, Anthony Sena, Kristin Kostka, Hamed Abedtash, Maria Tereza F. Abrahao, Amanda Alberga, Heba Alghoul, Osaid Alser, Thamir M Alshammari, Carlos Areia, Juan M Banda, Jaehyeong Cho, Aedin C Culhane, Alexander Davydov, Frank J DeFalco, Talita Duarte-Salles, Scott L DuVall, Thomas Falconer, Weihua Gao, Asieh Golozar, Jill Hardin, George Hripcsak, Vojtech Huser, Hokyun Jeon, Yonghua Jing, Chi Young Jung, Benjamin Skov Kaas-Hansen, Denys Kaduk, Seamus Kent, Yeesuk Kim, Spyros Kolovos, Jennifer Lane, Hyejin Lee, Kristine E. Lynch, Rupa Makadia, Michael E. Matheny, Paras Mehta, Daniel R. Morales, Karthik Natarajan, Fredrik Nyberg, Anna Ostropolets, Rae Woong Park, Jimyung Park, Jose D. Posada, Albert Prats-Uribe, Gowtham A. Rao, Christian Reich, Yeunsook Rho, Peter Rijnbeek, Selva Muthu Kumaran Sathappan, Lisa M. Schilling, Martijn Schuemie, Nigam H. Shah, Azza Shoaibi, Seokyoung Song, Matthew Spotnitz, Marc A. Suchard, Joel Swerdel, David Vizcaya, Salvatore Volpe, Haini Wen, Andrew EWilliams, Belay B Yimer, Lin Zhang, Oleg Zhuk, Daniel Prieto-Alhambra, Patrick Ryan

This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.

KEY FINDINGS (2)

• 26,074 COVID19 admitted patients from 3 continents

- US: 2,477

South Korea: 5,172

- Spain: 18,425

• 49,331 summary characteristics extracted, summarised in an interactive web app (next slides)

KEY FINDINGS (3)

- Patients were majority male in the US (VA OMOP: 94%, STARR-OMOP: 57%, CUIMC: 52%) and Spain (SIDIAP: 54%, HM: 60%)
- ... but majority female in South Korea (HIRA: 56%).

 Age profiles varied across data sources.

KEY FINDINGS (4)

COVID is no flu

Healthier

Less drug usage

Exceptions obesity, diabetes, OA

http://evidence.ohdsi.org/Covid19CharacterizationHospitalization/

Seek COVER: Development and validation of a personalized risk calculator for COVID-19 outcomes in an international network

Ross D. Williams

Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands

Open collaboration requires FULL transparency in every step of the research process

- Protocol and analysis source code freely available and directly downloadable: https://github.com/ohdsi-studies/Covid19PredictionStudies
- Phenotype definitions are both human-readable and computer-executable using ATLAS against any OMOP CDM: https://atlas.ohdsi.org/
- Manuscript posted on Medrxiv while awaiting peer-review: https://www.medrxiv.org/content/10.1101/2020.05.26.20112649v1
- All analysis results available for public exploration through interactive R shiny application: http://evidence.ohdsi.org/Covid19CoverPrediction
- The study is a living evidence repository: any data partners can execute analysis and share aggregate results at any point, including updates as data accumulate

Journal of the American Medical Informatics Association, 25(8), 2018, 969–975 doi: 10.1093/jamia/ocy032

Advance Access Publication Date: 27 April 2018 Research and Applications

Research and Applications

Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data

Jenna M Reps, ¹ Martijn J Schuemie, ¹ Marc A Suchard, ² Patrick B Ryan, ¹ and Peter R Rijnbeek³

¹Janssen Research and Development, Raritan, NJ, USA, ²Department of Biomathematics, UCLA School of Medicine, CA, USA, and ³Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands

Corresponding Author: Dr Jenna M Reps, Janssen Research and Development, Raritan, New Jersey, USA; jreps@its.jnj.com

Received 30 May 2017; Revised 8 December 2017; Editorial Decision 23 February 2018; Accepted 15 March 2018

RESEARCH ARTICLE

Open Access

Feasibility and evaluation of a large-scale external validation approach for patient-level prediction in an international data network: validation of models predicting stroke in female patients newly diagnosed with atrial fibrillation

Jenna M. Reps^{1*}, Ross D. Williams², Seng Chan You³, Thomas Falconer⁴, Evan Minty⁵, Alison Callahan⁶, Patrick B. Ryan¹, Rae Woong Park^{3,7}, Hong-Seok Lim⁸ and Peter Rijnbeek²

COVER design for predicting COVID-19 outcomes in symptomatic patients presenting in outpatient setting

1d to 30d

Sex

Concept-based:

- Condition groups (SNOMED + descendants), >=1 occurrence
- Drug era groups (ATC/RxNorm + descendants), >=1 day during the interval which overlaps with at least 1 drug era

Cohort-based:

- cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, kidney disease

- services (mechanical ventilation, tracheostomy, or ECMO)
- Death

Personalizing risk is only useful if the prediction model is reliable

Internal validation in Influenza

External validation in COVID

Outcome	Predictors	No. Variables	AUC	Outcome	Database	AUC (95% ci)
Hospitalization with	Conditions/dru	521	0.852	Hospitalization	HIRA	0.806 (0.762-0.851)
pneumonia	gs + age/sex			with pneumonia	SIDIAP	0.748*
	Age/sex	2	0.818		TRDW	0.731 (0.611-0.851)
	COVER-H	9	0.840	Hospitalization	CUIMC	0.734 (0.699-0.769)
Hospitalization with pneumonia requiring intensive services or death	Conditions/dru gs + age/sex	349	0.860	with pneumonia requiring	HIRA	0.910 (0.889-0.931)
	Age/sex	2	0.821	intensive		
	COVER-I	9	0.839	services or death		
Death	Conditions/dru gs + age/sex	205	0.926			
				Death	CUIMC	0.820 (0.796-0.840)
	Age/sex	2	0.909		HIRA	0.898 (0.857-0.940)
	COVER-F	9	0.896		SIDIAP	0.895 (0.881-0.910)

Demo: COVER risk calculator

Demo: COVID disease natural history explored through predictive modeling

Characterizing Health Associated Risks, and Your Baseline Disease In SARS-COV-2 (CHARYBDIS)

Talita Duarte-Salles

#OHDSICOVID19
Characterization Study Group

CHARYBDIS – Aims

1) Describe the baseline demographic, clinical characteristics, treatments and outcomes of interest among individuals with COVID-19 overall and stratified by sex, age and specific comorbidities

2) Describe characteristics and outcomes of influenza patients between September 2017 and April 2018 compared to the COVID-19 population

CHARYBDIS – Target cohorts

Persons tested for SARS-CoV-2

Persons tested positive for SARS-CoV-2

Persons tested with a COVID-19 diagnosis record or a SARS-

CoV-2 positive test

Persons with a **COVID-19 diagnosis** or a SARS-CoV-2 **positive test**

Persons **hospitalized** with a COVID-19 diagnosis record or a SARS-CoV-2 positive test

Persons hospitalized and requiring **intensive services** with a COVID-19 diagnosis record or a SARS-CoV-2 positive test

Persons with **Influenza** diagnosis or positive test 2017-2018

Persons hospitalized with influenza diagnosis or positive test 2017-2018

Persons hospitalized with influenza diagnosis or positive test and requiring intensive services 2017-2018

CHARYBDIS – Stratification factors

COVID-19 and...

- Asthma
- Cancer
- Cardiac Outcomes
- Chronic Kidney Disease
- COPD
- Elderly
- End-Stage Renal Disease

- Gender Differences
- Heart Disease
- Hepatitis C
- HIV infection
- Hypertension
- Immune Disorders
- Obesity

- Pediatrics
- Pregnant Women
- Tuberculosis
- Type 2 Diabetes
- Dementia

... And more!

CHARYBDIS – Features

<u>Pre-index characteristics</u> (the last 30 days and the year prior to index):

- **Demographics**: Age, Sex
- Conditions groups (SNOMED + descendants)
- Drug groups (ATC/RxNorm + descendants)

Post-index characteristics (at index date and in the 30 days from index date):

- Conditions groups (SNOMED + descendants)
- Symptoms
- Outcomes
- Procedural treatments
- Pharmacological treatments
- Death

CHARYBDIS – Features

Prevalent Asthma or Chronic obstructive pulmonary disease (COPD)

Asthma/COPD Step 1

Asthma/COPD Step 2

Asthma/COPD Step 3

Gestational diabetes

Eclampsia and pre-eclampsia

Fever

Cough

Myalgia

Malaise or fatigue

Dyspnea

Anosmia OR Hyposmia OR Dysgeusia

Persons with additional testing for SARS-Cov-2 (prior test >=1d before test)

Persons with additional testing for SARS-Cov-2 (prior test >=5d before test)

Hospitalization episodes

Pneumonia during hospitalization

Acute Respiratory Distress syndrome (ARDS) during hospitalization

Acute kidney injury (AKI) diagnosis during hospitalization

Acute kidney injury (AKI) using diagnosis codes and change in measurements during hospitlization

Sepsis during hospitalization

Venous thromboembolic (pulmonary embolism and deep vein thrombosis) events

Pulmonary Embolism events

Deep vein thrombosis events

Heart failure during hospitalization

Cardiac arrhythmia during hospitalization

Bradycardia or heart block during hospitalization

Supraventricular arrythymia during hospitalization

ventricular arrhythmia or cardiac arrest during hospitalization

death

Stillbirth

Livebirth Delivery

Livebirth Preterm Delivery

Livebirth Post term Delivery

Livebirth excluding preterm and post term delivery

Abortion

Premature Rupture of Membranes

Fetal growth restriction

Cesarean section

Hospitalization for Asthma

Hospitalization for COPD

Pneumonia episodes

intensive services during hospitalization

mechanical ventilation during hospitalization

tracheostomy during hospitalization

ECMO during hospitalization

dialysis during hospitalization

Discharge from hospitalization

Persons with chest pain or angina

Angina during hospitalization

Persons with hepatic failure

Acute pancreatitis events

Total cardiovascular disease events

Gastrointestinal bleeding events

Cardiovascular-related mortality

Transient ischemic attack events

Stroke (ischemic or hemorrhagic) events

Ischemic stroke events

Hemorrhagic stroke (intracerebral bleeding) events

Acute myocardial infarction events

Bleeding during hospitalization

Incident depression with no prior treatment and no mania/psychoses

Hospitalization for psychosis

Suicide and suicidal ideation

Multi-system inflammatory syndrome (Kawasaki disease or

Open collaboration requires FULL transparency in every step of the research process

- Protocol and analysis source code freely available and directly downloadable: https://github.com/ohdsi-studies/Covid19CharacterizationCharybdis
- Phenotype definitions are both human-readable and computer-executable using ATLAS against any OMOP CDM: https://atlas.ohdsi.org/
- All analysis results will be available for public exploration through interactive R shiny application:
 http://data.ohdsi.org/Covid19CharacterizationCHARYBDIS/
- The study is a living evidence repository: any data partners can execute analysis and share aggregate results at any point, including updates as data accumulate

Join the Journey!

Demo: ATLAS phenotypes

Demo: CHARIBDYS Git repository

Installation

OHDSI **OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS**

COVID-19 Study-A-Thon ohdsi.org/covid-19-updates

in /company/ohdsi #JoinTheJourney

🕥 /OHDSI