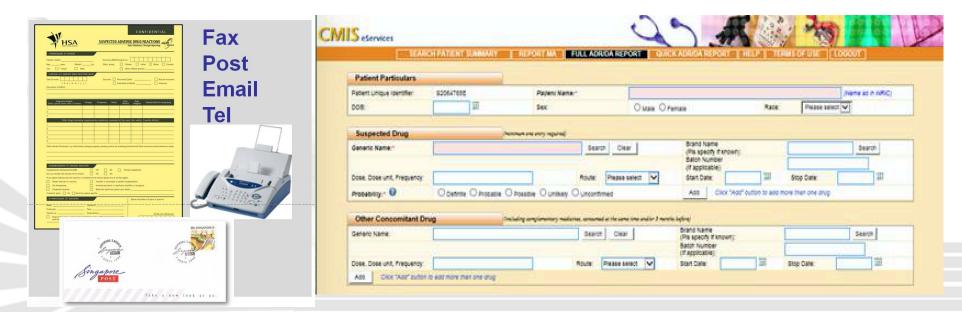


Use of electronic health records to evaluate treatment pathways – a Common Data Model approach

Desmond Teo
Data Analyst
Vigilance and Compliance Branch
Health Sciences Authority, Singapore
12 May 2020

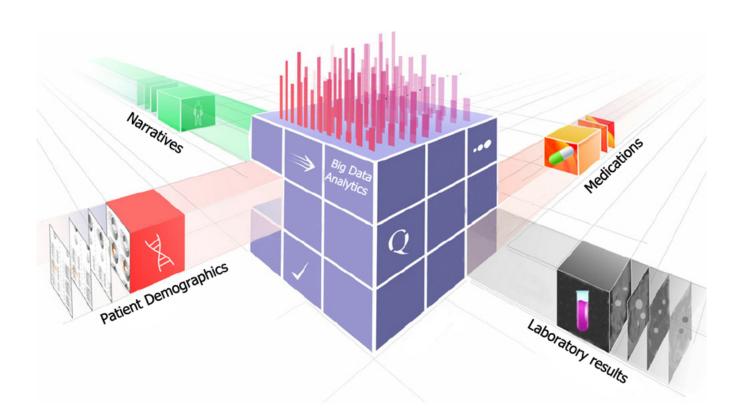
Outline


- Drug safety surveillance system in Singapore
 - Spontaneous reporting system
 - Using Electronic Medical Records (EMR)

 Study: "Use of electronic health records to evaluate treatment pathways – a Common Data Model approach"

Traditional Drug Safety Surveillance

- Spontaneous, voluntary reports to drug regulatory authority
- 2006: Critical Medical Information Store (CMIS)
 - Real time drug safety reports from public hospitals and polyclinics
- 20,000 reports annually


Limitations of Spontaneous Reporting Systems

Under-reporting, stimulated reporting

- Captures only basic information
 - Often missing data on drug dosages, concomitant medications
 - Missing information on patient history, co-morbidities etc.
- Lack of data on drug usage unable to calculate incidence

Enhancement with Electronic Medical Records

Passive ADR reporting program

Active Surveillance
System

Use of electronic health records to evaluate treatment pathways – a Common Data Model approach

Tan Hui Xing¹, Cynthia Sung^{1,2}, Chahed Haroun¹, Teo Chun Hwee Desmond¹, Ang Pei San¹, Tan Su Yin Doreen³, Dorajoo Sreemanee Raaj¹

¹ Vigilance & Compliance Branch, Health Products Regulation Group, Health Sciences Authority, Singapore

² Health Services and Systems Research, Duke-NUS Medical School, Singapore

³ Department of Pharmacy, Khoo Teck Puat Hospital, Singapore

Objectives

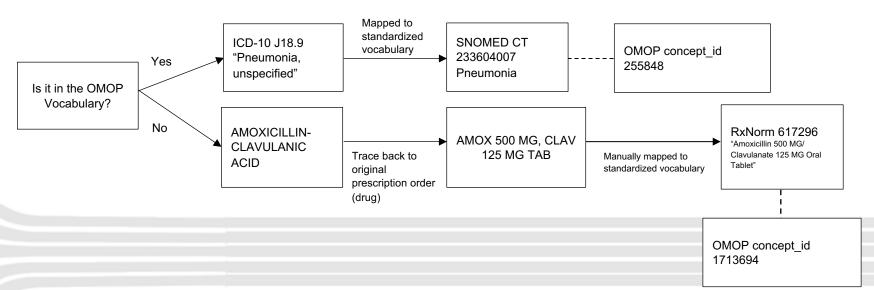
- Demonstrate the use of a common data model (CDM) to harmonize electronic medical records (EMR)
 - To transform data from an acute care hospital in Singapore to the CDM developed by the Observational Medical Outcomes Partnership (OMOP)
 - To apply analytical tools on the data to uncover treatment patterns of patients newly diagnosed with diabetes mellitus, hypertension or depression.

Methodology

1. Conversion of source data files to the OMOP CDM

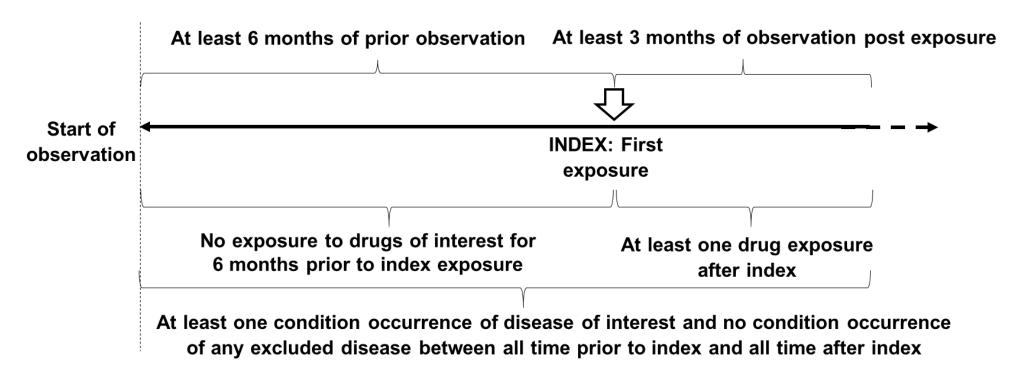
2. Federated query on the transformed data

Conversion of source data files to OMOP CDM


Data source:

- Approximately 250,000 patients
- Tertiary care hospital in Singapore
 - 795-bed general and acute care, with A&E services
 - Serves a wide range of medical specialties from cardiology to general surgery to renal medicine, across multiple age groups and demographics of patients
 - Get referral from primary care providers e.g. general practitioners, government clinics for management of diabetes, hypertension
- Data from January 2013 to December 2016 comprising the following:
 - 1.1 million rows of diagnoses
 - 5.2 million rows of ordered medications
 - 15.5 million lab records

Conversion of source data files to OMOP CDM


- Data vocabularies employed:
 - Systematic Nomenclature of Medicine Clinical Terms (SNOMED CT) for diagnosis codes,
 - RxNorm Extension for drugs, and
 - Logical Observation Identifiers Names and Codes (LOINC) for laboratory tests and vitals measurements
- Extract, Transform, Load (ETL) process
- Mapped to OMOP table based on "Concept Name"

Federated query on the transformed data

Selection criteria of diabetes, hypertension and depression cohorts

Federated query on the transformed data

Diseases of interest, excluded diseases and drugs used in each cohort

Cohort	Disease of interest	Excluded disease	Drug classes included
Diabetes	Diabetes mellitus	Findings related to pregnancy	Insulins, biguanides, sulfonylureas, DPP4 inhibitors*, alpha-glucosidase inhibitors, SGLT2 inhibitors^
Hypertension	Hypertensive disorder	Findings related to pregnancy	Antihypertensives, diuretics, peripheral vasodilators, beta blockers, calcium channel blockers, agents acting on the renin-angiotensin-aldosterone system
Depression	Depressive disorder	Findings related to pregnancy, bipolar I disorder, schizophrenia	Antidepressants

^{*}dipeptidyl peptidase 4 inhibitors

[^]sodium-glucose transport protein 2 inhibitors

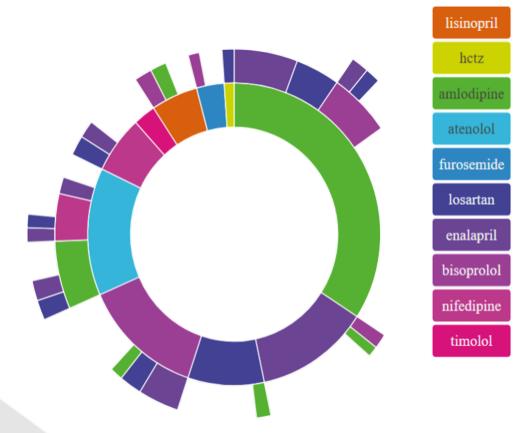
Percentage of records converted:

OMOP CDM T	ables	Source Tables			
Table name	Number of rows of records	Table name	Number of rows of records	Proportion migrated	
person	245,561	t_demographics	258,038	95.2%	
condition occurrence	Primary: 210,830	t_primary_diagnosis	222,554	94.7%	
	Secondary: 799,169	t_secondary_diagnosis	839,265	95.2%	
measurement	14,116,544	t_lab_result	15,523,576	90.9%	
visit_occurrence	1,041,587	t_encounter	1,057,263	98.5%	
drug ovrocure	4 270 CE7	t_eprescription_dispensing*	2,147,505	04.00/	
drug_exposure	4,378,657	t_inpatient_med_order [†]	3,015,159	84.8%	

^{*}Refers to outpatient pharmacy orders and inpatient discharge prescriptions

[†]Refers to medications used during inpatient ward stay

- Number of patients identified per cohort
 - Diabetes mellitus (n = 1,006)
 - Hypertension (n = 3,175)
 - Depression (n = 251)
- Sequence of drug exposures in these patients were tracked, and plotted on sunburst diagrams


Diabetes Mellitus

Period of Data: Jan 2013 to Dec 2016

Diabetes Mellitus (n=1,006)

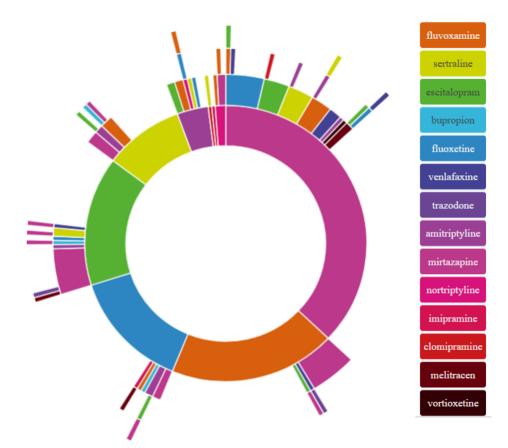
- Metformin most often prescribed as the first medication (53.5%).
- Sulfonylureas (SU) were the most common second line agent used in diabetes.
- Among SU, glipizide was the most common (43.3%), followed by tolbutamide (7.1%).
- Newer generation alternatives such as gliclazide and glimepiride were used less frequently, at 5.5 and 0.6%, respectively.

Hypertension

Period of Data: Jan 2013 to Dec 2016

Hypertension (n=3,175)

- Amlodipine (22.1%) was the most commonly used first line medication for hypertension.
- Considerable heterogeneity for first-line treatment for hypertension.
- However, for second-line options, most common drugs used were enalapril, losartan, nifedipine and amlodipine.



Observations

 PNAS treatment pathways study (published 2016): most prevalent drugs were hydrochlorothiazide, lisinopril, amlodipine

- Our study: most prevalent were amlodipine, losartan, enalapril (very few diuretics)
 - Data were from Jan 2013 to Dec 2016
 - Clinicians likely adopted a newer version of the treatment guidelines i.e. JNC-8

Depression (n=251)

- Mirtazapine (37.1%) and fluvoxamine (19.1%) were the most commonly used first line medications for depression.
- Overall, a large variety of drug choices across all levels of treatment. Little consensus on prescribing patterns.

Depression

Period of Data: Jan 2013 to Dec 2016

Limitations with Sunburst Diagrams

- Dosages and dosing frequency of different treatments not compared
- Unable to identify whether treatment was stopped or switched

Conclusion

- Considerable heterogeneity in treatment patterns for hypertension and depression, whereas for diabetes, metformin was the most common first-line agent (53.5%)
- Use of CDM and federated query¹ were feasible for the data source
- These models provide drug regulators valuable insights on real world drug utilization patterns and adherence to recommended treatment guidelines

^{1.} Hripcsak, G., et al. Observational Health Data Sciences and Informatics (OHDSI): Characterising treatment pathways at scale using the OHDSI network. Proc Natl Acad Sci U.S.A, 2016. 113(27):7329-36.

Any Questions?

