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Propensity scores are becoming increasingly popular

Figure 1: Number of propensity score publications in medical research by year



Review on the use of propensity score diagnostics

• Recent review on the use of propensity score diagnostics in the 
applied medical literature [Granger et al. 2020]

• Inclusion criteria:
• Publication years 2014-2016 
• High-impact journals (Impact Factor > 4)

• Extracted data on:
• Research area
• Propensity score method used
• Diagnostics used 



Review on the use of propensity score diagnostics

Key Findings:

• 894 studies 
included

• 20.9% did not 
report use of 
any diagnostic

• 36.6% used 
hypothesis tests
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Mean-based 

• Standardised difference 
(SD)

• t-test statistic (𝑡)

• Percent reduction in 
mean difference (PR)

Propensity score diagnostics

Distribution-based

• Overlapping 
coefficient 
(OVL)

• Kolmogorov-
Smirnov 
Statistic (KS)
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Individual diagnostics



Notation: exposure indicator for subject 𝑖: 𝐸!, propensity 
score for subject 𝑖: 𝑃𝑆! , sample size: 𝑛.

For continuous variable 𝑋:

• 𝑂𝐶𝑃! 𝑋" = #
$
∑%:!!'!" 𝐸%

• 𝐸𝐶𝑃! 𝑋" = #
$
∑%:!!'!" 𝑃𝑆%

• 𝐷! = | 𝑂𝐶𝑃! − 𝐸𝐶𝑃!|
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Cumulative prevalence of exposure
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Cumulative prevalence of exposure 



Notation: exposure indicator for subject 𝑖: 𝐸!, propensity 
score for subject 𝑖: 𝑃𝑆! , sample size: 𝑛.
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Cumulative prevalence of exposure



Propensity score model:
• logit(PS)=𝛼" + 𝛼#𝑋# + 𝛼$𝑋$+,… , 𝛼%𝑋% + 𝛼&𝑋&

Variation between scenarios: 
Correct PS: Incorrect PS:

S1: 𝑋! = 0 Linear model 𝑋" = 0

S2: 𝑋! = 0.4(3.5#! − 1) Nonlinearity added (monotonic) 𝑋! = 0

S3: 𝑿𝟖 = 𝑿𝟒𝑿𝟓 Binary-binary interaction 𝑿𝟖 = 𝟎

S4: 𝑿𝟖 = 𝑿𝟒𝑿𝟏 Binary-continuous interaction 𝑿𝟖 = 𝟎

S5: 𝑿𝟖 = 𝑿𝟏𝑿𝟐 Continuous-continuous interaction 𝑿𝟖 = 𝟎
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Simulated data



Propensity score model:
• logit(PS)=𝛼" + 𝛼#𝑋# + 𝛼$𝑋$+,… , 𝛼%𝑋% + 𝛼&𝑋&

Variation between scenarios: 
Correct PS: Incorrect PS:

S1: 𝑋! = 0 Linear model 𝑋" = 0

S2: 𝑿𝟖 = 𝟎. 𝟒(𝟑. 𝟓𝑿𝟏 − 𝟏) Nonlinearity added (monotonic) 𝑋! = 0

S3: 𝑿𝟖 = 𝑿𝟒𝑿𝟓 Binary-binary interaction 𝑿𝟖 = 𝟎

S4: 𝑿𝟖 = 𝑿𝟒𝑿𝟏 Binary-continuous interaction 𝑿𝟖 = 𝟎

S5: 𝑿𝟖 = 𝑿𝟏𝑿𝟐 Continuous-continuous interaction 𝑿𝟖 = 𝟎
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Simulated data
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Simulated data



SD: standardised difference KS: Kolmogorov-Smirnov statistic

t: t-test statistic OVL: overlapping coefficient

PR: percent reduction in mean prevalence CP: cumulative prevalence 16

Scenario 1: Omission of a linear term
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Scenario 1: Omission of a linear term
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Simulated data



Scenario 2: Nonlinear term misspecified
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Scenario 2: Misspecification of a non-linear term



Figures:

- Scenario 3 (top left) binary-binary

- Scenario 4 (top right) binary-continuous

- Scenario 5 (bottom left) continuous-continuous
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Scenarios 3-5: Omission of an interaction term



• Mean-based diagnostics can fail to identify nonlinear 
misspecifications in the propensity score

• Distribution-based diagnostics least reliable at identifying omission 
of interactions terms. 

• Cumulative prevalence diagnostics most useful for identifying all 
types of propensity score misspecification. 
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Conclusions (so far)
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What about 
the 

outcome?

But……
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Which balance 
metric?

• Standardised 
difference (SD)

• Overlapping 
coefficient (OVL)

• Kolmogorov-Smirnov 
Statistic (KS)

Which weighting scheme?

Let 𝑤(% denote the 𝑗)* weight for 
covariate 𝑖. Then:

• 𝑤#% = 𝛾%𝑆𝑡𝑑. 𝐷𝑒𝑣(𝑥%) [Caruana et al. 2015]

• 𝛾! is the coefficient for 𝑥! obtained after 
regressing outcome on 𝑥! .

• 𝑤.% = 𝛿%𝑆𝑡𝑑. 𝐷𝑒𝑣(𝑥%)
• 𝛿! is the coefficient for 𝑥! obtained after 

regressing outcome on all covariates.
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Overall diagnostics



Which balance 
metric?

• Standardised 
difference (SD)

• Overlapping 
coefficient (OVL)

• Kolmogorov-Smirnov 
Statistic (KS)

Which weighting scheme?

Let 𝑤(% denote the 𝑗)* weight for 
covariate 𝑖. Then:

• 𝑤#% = 𝛾%𝑆𝐷(𝑥%) [Caruana et al. 2015]
• 𝛾! is the coefficient for 𝑥! obtained after 

regressing outcome on 𝑥! .
• 𝑤.% = 𝛿%𝑆𝐷(𝑥%)

• 𝛿! is the coefficient for 𝑥! obtained after 
regressing outcome on all covariates.
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Overall diagnostics

• Disease risk scores (DRS) 
defined as predicted 
outcome under the control 
condition

• Standardised mean 
difference in DRS as a 
propensity score 
diagnostic [Stuart et al. 2013]



Propensity score model:
• logit(PS)=𝛼" + 𝛼#𝑋# + 𝛼.𝑋.+,… , 𝛼0𝑋0

Outcome model:
• Y=𝛽" + 𝛽#𝑋# + 𝛽.𝑋.+,… , 𝛽0𝑋0 + 𝛽#"𝑋#"

Linear and Non-linear Scenarios:  

Simulated Data

S1: 𝑋"* = 0 Independent baseline covariates

S2: 𝑋"* = 0 Correlated baseline covariates

S3: 𝑋"* = 0.2(6.0#! − 1) Monotonic non-linearity
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Simulated data



Propensity score model:
• logit(PS)=𝛼" + 𝛼#𝑋# + 𝛼.𝑋.+,… , 𝛼0𝑋0

Outcome model:
• Y=𝛽" + 𝛽#𝑋# + 𝛽.𝑋.+,… , 𝛽0𝑋0 + 𝛽#"𝑋#"

Non-additive Scenarios:  
S4: 𝑋"* = 𝑋"𝑋+ Binary-binary interaction

S5: 𝑋"* = 𝑋"𝑋, Binary-continuous interaction

S6:𝑋"* = 𝑋,𝑋- Continuous-continuous interaction
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Simulated data
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Scenarios 1 and 2: Linear outcomes

Scenario Balance 
Metric

Weights 1 Weights 2 SD(DRS)

Scenario 1 SD 0.992 0.996 1.000

KS 0.137 0.134

OVL 0.012 0.016

Scenario 2 SD 0.129 0.995 1.000

KS 0.102 0.142

OVL 0.031 0.053

*SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping 
coefficient; DRS: Disease risk score

Table 1: Spearman rank correlation between overall diagnostics and bias
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Scenarios 1 and 2: Linear outcomes

Scenario Balance 
Metric

Weights 1 Weights 2 SD(DRS)

Scenario 1 SD 0.992 0.996 1.000

KS 0.137 0.134

OVL 0.012 0.016

Scenario 2 SD 0.129 0.995 1.000

KS 0.102 0.142
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Table 1: Spearman rank correlation between overall diagnostics and bias
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Simulated data



Scenario 2: Nonlinear term misspecified
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Scenario 2: Non-linear term in outcome model



Scenario 2: Nonlinear term misspecified
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Scenario 2: Non-linear term in outcome model



Figures:

- Scenario 3 (top left) binary-binary

- Scenario 4 (top right) binary-continuous

- Scenario 5 (bottom left) continuous-continuous

35

Scenarios 3-5: Interaction term in the outcome model



36

• Main finding: Standardised mean difference in the disease 
risk score is a promising overall diagnostic

• Limitations: 
(1) Not robust to misspecifications in the outcome model
(2) Performance dependent on sample size

• Possible solutions:
(1) Use of CP diagnostics to check specification
(2) Using full sample or historic cohort to estimate DRS 

Conclusions
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So, how best to assess propensity scores?



Thank you for listening

@EGranger90
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Scenario 2: Nonlinear term misspecified
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Scenario 2: Non-linear (stratification)



Figures:

- Scenario 3 (top left) binary-binary

- Scenario 4 (top right) binary-continuous

- Scenario 5 (bottom left) continuous-continuous
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Scenarios 3-5: Interaction terms (stratification)



Scenario 2: Nonlinear term misspecified
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Additional weights: Binary outcome

𝑤!" = 1 + log 𝑂𝑅#'$ −
1
𝑝
,

%&'

(
log(𝑂𝑅#($)

𝑤)" = 1 + log 𝑂𝑅#'$ −
1
𝑝
,

%&'

(
log 𝑂𝑅#($

𝑤*" = 1 + |log 𝑂𝑅#'$ | −
1
𝑝
,

%&'

(
| log 𝑂𝑅#($ ) |

Belitser, SV et al. Measuring balance and model selection in 
propensity score methods. Pharmacoepidemiology and Drug 
Safety. 2011



Scenario 2: Nonlinear term misspecified
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Additional scenario: Binary outcome (matching)
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Scenario 2: Nonlinear term misspecified
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Additional scenario: Binary outcome (stratification)
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