Propensity Score Diagnostics

Emily Granger Jamie C. Sergeant Mark Lunt

Propensity scores are becoming increasingly popular

Figure 1: Number of propensity score publications in medical research by year

Review on the use of propensity score diagnostics

- Recent review on the use of propensity score diagnostics in the applied medical literature [Granger et al. 2020]
- Inclusion criteria:
 - Publication years 2014-2016
 - High-impact journals (Impact Factor > 4)
- Extracted data on:
 - Research area
 - Propensity score method used
 - Diagnostics used

Review on the use of propensity score diagnostics

Key Findings:

- 894 studies included
- 20.9% did not report use of any diagnostic
- 36.6% used hypothesis tests

Aim 1:

Review and compare the existing propensity score diagnostics.

Aim 2:

Individual Diagnostics

Overall Diagnostics Aim 2:

Overall Diagnostics

Aim 2:

Individual diagnostics

Mean-based

- Standardised difference (SD)
- t-test statistic (t)
- Percent reduction in mean difference (PR)

Distribution-based

Overlapping coefficient (OVL)

 Kolmogorov-Smirnov
Statistic (KS)

Cumulative prevalence of exposure

Notation: exposure indicator for subject *i*: E_i , propensity score for subject *i*: PS_i , sample size: *n*.

For continuous variable *X*:

•
$$OCP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} E_i$$

Cumulative prevalence of exposure

Notation: exposure indicator for subject *i*: E_i , propensity score for subject *i*: PS_i , sample size: *n*.

For continuous variable *X*:

•
$$OCP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} E_i$$

•
$$ECP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} PS_i$$

Cumulative prevalence of exposure

Notation: exposure indicator for subject *i*: E_i , propensity score for subject *i*: PS_i , sample size: *n*.

For continuous variable *X*:

•
$$OCP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} E_i$$

•
$$ECP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} PS_i$$

•
$$D_X = |OCP_X - ECP_X|$$

Propensity score model:

• logit(PS)= $\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \dots, \alpha_7 X_7 + \alpha_8 X_8$

Variation between scenarios:

Correct PS:

S1: $X_8 = 0$ Linear model

Propensity score model:

• logit(PS)= $\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \dots, \alpha_7 X_7 + \alpha_8 X_8$

Variation between scenarios:

Correct PS:

S2: $X_8 = 0.4(3.5^{X_1} - 1)$ Nonlinearity added (monotonic)

Propensity score model:

• logit(PS)= $\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \dots, \alpha_7 X_7 + \alpha_8 X_8$

Variation between scenarios:

Correct PS:

S1: $X_8 = 0$	Linear model
S2: $X_8 = 0.4(3.5^{X_1} - 1)$	Nonlinearity added (monotonic)
S3: $X_8 = X_4 X_5$	Binary-binary interaction
S4: $X_8 = X_4 X_1$	Binary-continuous interaction
S5: $X_8 = X_1 X_2$	Continuous-continuous interaction

Propensity score model:

• logit(PS)= $\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \dots, \alpha_7 X_7 + \alpha_8 X_8$

Variation between sc	enarios:	
Correct PS:		Incorrect PS:
S1: $X_8 = 0$	Linear model	$X_1 = 0$
S2: $X_8 = 0.4(3.5^{X_1} - 1)$	Nonlinearity added (monotonic)	$X_8=0$
S3: $X_8 = X_4 X_5$	Binary-binary interaction	$X_8 = 0$
S4: $X_8 = X_4 X_1$	Binary-continuous interaction	$X_8 = 0$
S5: $X_8 = X_1 X_2$	Continuous-continuous interaction	$X_8 = 0$

Scenario 1: Omission of a linear term

Scenario 1: Omission of a linear term

Decreasing	
R^2	

1	2	3
20%, 5000	20%, 2000	20%, 500
4	5	6
10%, 5000	10%, 2000	10%, 500
7	8	9
5%, 5000	5%, 2000	5%, 500

Scenario 2: Misspecification of a non-linear term

Scenarios 3-5: Omission of an interaction term

standardised difference	—— K-S statistic
t-test statistic	overlapping coefficient
percent reduction in mean diff	cumulative prevalence

Figures:

- Scenario 3 (top left)
- Scenario 4 (top right)
- binary-binary
- nt) binary-continuous
- Scenario 5 (bottom left) continuous-continuous

Conclusions (so far)

- Mean-based diagnostics can fail to identify nonlinear misspecifications in the propensity score
- Distribution-based diagnostics least reliable at identifying omission of interactions terms.
- Cumulative prevalence diagnostics most useful for identifying all types of propensity score misspecification.

But.....

NIH-PA Author Manus

NIH-PA Author Manuscrip

NIH-PA Author Man

NIH Public Access 9 HEALTY

Am J Epidemiol. Author manuscript; available in PMC 2007 June 15.

Published in final edited form as: Am J Epidemiol. 2006 June 15; 163(12): 1149-1156.

Variable selection for propensity score models.

M. Alan Brookhart¹, Sebastian Schneeweiss¹, Kenneth J. Rothman^{1,2}, Robert J. Glynn^{1,3}, Jerry Avorn¹, and Til Stürmer¹

1 Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA

0 Deservices of Esidemicles, and Medicine. Design Helicentic Medical Contex Design 144

NIH Public Access

idemiol Drug Saf. Author manuscript; available in PMC 2012 June 1.

Published in final edited form as: Pharmacoepidemiol Drug Saf. 2011 June ; 20(6): 551-559. doi:10.1002/pds.2098.

The implications of propensity score variable selection strategies in pharmacoepidemiology - an empirical illustration

Amanda R. Patrick¹, Sebastian Schneeweiss¹, M. Alan Brookhart², Robert J. Glynn^{1,3}, Kenneth J. Rothman⁴, Jerry Avorn¹, and Til Stürmer²

¹Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States

²Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina

³Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts

⁴RTI Health Solutions, Research Triangle Park, NC

Abstract

Purpose-To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality and hip fracture assuming a true mortality reduction of <15% and no effect on hip fracture.

Methods—We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios

Overall diagnostics

Which balance metric?

- Standardised difference (SD)
- Overlapping coefficient (OVL)
- Kolmogorov-Smirnov Statistic (KS)

Which weighting scheme?

Let w_{ji} denote the j^{th} weight for covariate *i*. Then:

- $w_{1i} = \gamma_i Std. Dev(x_i)$ [Caruana et al. 2015]
 - γ_i is the coefficient for x_i obtained after regressing outcome on x_i .
- $w_{2i} = \delta_i Std. Dev(x_i)$
 - δ_i is the coefficient for x_i obtained after regressing outcome on all covariates.

Overall diagnostics

Propensity score model:

• logit(PS)= $\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \dots, \alpha_9 X_9$

Outcome model:

• $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots, \beta_9 X_9 + \beta_{10} X_{10}$

Linear and Non-linear Scenarios:

S1: $X_{10} = 0$	Independent baseline covariates
S2: $X_{10} = 0$	Correlated baseline covariates
S3: $X_{10} = 0.2(6.0^{X_1} - 1)$	Monotonic non-linearity

Propensity score model:

• logit(PS)= $\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \dots, \alpha_9 X_9$

Outcome model:

• $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots, \beta_9 X_9 + \beta_{10} X_{10}$

Non-additive Scenarios:

S4: $X_{10} = X_1 X_5$	Binary-binary interaction
S5: $X_{10} = X_1 X_2$	Binary-continuous interaction
$S6:X_{10} = X_2X_7$	Continuous-continuous interaction

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
	OVL	0.012	0.016	
Scenario 2	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
	OVL	0.012	0.016	
Scenario 2	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
	OVL	0.012	0.016	
Scenario 2	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
	OVL	0.012	0.016	
Scenario 2	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

Scenario 2: Non-linear term in outcome model

Scenario 2: Non-linear term in outcome model

Scenarios 3-5: Interaction term in the outcome model

- Scenario 5 (bottom left) continuous-continuous

Conclusions

- Main finding: Standardised mean difference in the disease risk score is a promising overall diagnostic
- Limitations:
 - (1) Not robust to misspecifications in the outcome model
 - (2) Performance dependent on sample size
- Possible solutions:

(1) Use of CP diagnostics to check specification(2) Using full sample or historic cohort to estimate DRS

Individual Diagnostics

Overall Diagnostics Aim 2:

STEP 1: Choose variables STEP 2: Check individual covariates using CP diagnostics STEP 3: Check overall balance using DRS

STEP 1: Choose variables

X₁

X2

X3

Outcome

··· Xp

STEP 2: Check individual covariates using CP diagnostics

STEP 3: Check overall balance using DRS

STEP 1: Choose variables STEP 2: Check individual covariates using CP diagnostics STEP 3: Check overall balance using DRS

X₁

X2

Х3

Model

Хp

. . .

Thank you for listening

CE

ART

MANCHESTER

The University of Manchester

1824

Medical Research Council

References

[1] Granger, E et al. A review of the use of propensity score diagnostics in papers published in highranking medical journals. *BMC Research Methodology.* 2020.

[2] Brookhart, MA et al. Variable selection for propensity score models. *American Journal of Epidemiology.* 2006.

[3] Patrick, AR. The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration. *Pharmacoepidemiology and Drug Safety.* 2011.

[4] Caruana, E et al. A new weighted balance measure helped to select the variables to be included in a propensity score model. *Journal of Clinical Epidemiology.* 2015.

[5] Stuart, EA et al. Prognostic score-based balance measures for propensity score methods in comparative effectiveness research. *Journal of Clinical Epidemiology.* 2013

Medical Research Council

Scenario 2: Non-linear (stratification)

Scenarios 3-5: Interaction terms (stratification)

Additional weights: Binary outcome

$$w_{3i} = 1 + \log(OR_{X_iY}) - \frac{1}{p} \sum_{k=1}^{p} \log(OR_{X_kY})$$

$$w_{4i} = 1 + \sqrt{\log(OR_{X_iY})} - \frac{1}{p} \sum_{k=1}^{p} \sqrt{\log(OR_{X_kY})}$$

$$w_{5i} = 1 + |\log(OR_{X_iY})| - \frac{1}{p} \sum_{k=1}^{p} |\log(OR_{X_kY})|$$

Belitser, SV et al. Measuring balance and model selection in propensity score methods. *Pharmacoepidemiology and Drug Safety.* 2011

Additional scenario: Binary outcome (matching)

Additional scenario: Binary outcome (stratification)

