Propensity Score Diagnhostics

Emily Granger
Jamie C. Sergeant
Mark Lunt

MANCHESTER [Hi N sccrngorso Medica
1824 VERSUS ranger MRC Research

The University of Manchester ARTHRITIS

Council



Propensity scores are becoming increasingly popular
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Figure 1: Number of propensity score publications in medical research by year



Review on the use of propensity score diagnostics

* Recent review on the use of propensity score diagnostics in the
applied medical literature [Granger et al. 2020]

* Inclusion criteria:
* Publication years 2014-2016

* High-impact journals (Impact Factor > 4)

* Extracted data on:
* Research area
* Propensity score method used
* Diagnostics used



Review on the use of propensity score diagnostics

Key Findings:

e 894 studies
included

e 20.9% did not
report use of
any diagnostic

* 36.6% used
hypothesis tests
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Aims of research

Aim 1: Aim 2:
Review and compare Develop guidelines for
the existing how to build and
propensity score assess propensity

diagnostics. score models.
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Individual diagnostics

Mean-based

e Standardised difference
(SD)

* t-test statistic (t)

* Percent reduction in
mean difference (PR)

Distribution-based

Overlapping
coefficient
(OVL)

* Kolmogorov-
Smirnov
Statistic (KS)

Probability density

Cumulative probability




Cumulative prevalence of exposure

exposure indicator for subject i: E;, propensity
score for subject i: PS;, sample size: n.

For continuous variable X:  ©-
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Cumulative prevalence of exposure

exposure indicator for subject i: E;, propensity
score for subject i: PS;, sample size: n.

For continuous variable X:  ©-
1 g
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Cumulative prevalence of exposure

exposure indicator for subject i: E;, propensity
score for subject i: PS;, sample size: n.

For continuous variable X: =
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Simulated data

Propensity score model:
* IOgIt(PS)=a0 + Of]_Xl + a2X2+, e a7X7 + a8X8

Variation between scenarios:
Correct PS:

S1: Xg =0 Linear model
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Simulated data

Propensity score model:
* IOgIt(PS)=a0 + (1le + a2X2+, e a7X7 + a8X8

Variation between scenarios:

Correct PS: Incorrect PS:
S1: Xg =0 Linear model X1 =0
S2: Xg = 0.4(3.5%1 — 1)  Nonlinearity added (monotonic) Xg =0
S3: Xg = X4 X5 Binary-binary interaction Xg=0
S4: Xg = X4 X4 Binary-continuous interaction Xg=0

S$5: Xg = XX, Continuous-continuous interaction Xg=0



Scenario 1: Omission of a linear term

Sample size 5000

40-
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»

standardised balance measure

SD: standardised difference KS: Kolmogorov-Smirnov statistic
t: t-test statistic OVL: overlapping coefficient

PR: percent reduction in mean prevalence  CP: cumulative prevalence
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Scenario 1: Omission of a linear term

Sample size 500
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SD: standardised difference KS: Kolmogorov-Smirnov statistic
t: t-test statistic OVL: overlapping coefficient

PR: percent reduction in mean prevalence  CP: cumulative prevalence
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Simulated data

Decreasing sample size

D . 20%, 5000 20%, 2000 20%, 500
ecreasing

RZ
10%, 5000 10%, 2000  10%, 500

5%, 5000 5%, 2000 5%, 500



Scenario 2: Misspecification of a non-linear term

c-statistic
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Scenarios 3-5: Omission of an interaction term
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Conclusions (so far)

* Mean-based diagnostics can fail to identify nonlinear
misspecifications in the propensity score

* Distribution-based diagnostics least reliable at identifying omission
of interactions terms.

* Cumulative prevalence diagnostics most useful for identifying all
types of propensity score misspecification.
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Abstract
Purpose—To examine the effect of variable selection strategies on the performance of
propensity score (PS) methods in a study of statin initiation, mortality and hip fracture assuming a
true mortality reduction of <15% and no effect on hip fracture.
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Aims of research

Overall
Diagnostics



Overall diagnhostics

Which balance
metric?

e Standardised
difference (SD)

* Overlapping
coefficient (OVL)

e Kolmogorov-Smirnov
Statistic (KS)

Which weighting scheme?

Let w;; denote the j* weight for
covariate i. Then:

i Wli — ylStd Dev(xi) [Caruana et al. 2015]
y;is the coefficient for x; obtained after
regressing outcome on Xx;.

* Wy = 5i5td. DBU(Xi)
d;is the coefficient for x; obtained after
regressing outcome on all covariates.



Overall diagnhostics

* Disease risk scores (DRS)
defined as predicted
outcome under the control
condition

e Standardised mean
difference in DRS as a
propensity score
diagnostic [Stuart et al. 2013]



Simulated data

Propensity score model:
° |Og|t(PS)=(ZO + ale + a2X2+, ey a9X9

Outcome model:
* Y=Ly + [1X1 + B2Xo+, ..., BoXg + B10X10

Linear and Non-linear Scenarios:

S1:X,,=0 Independent baseline covariates

S2: Xp=0 Correlated baseline covariates

S3: X, = 0.2(6.0%1 — 1)  Monotonic non-linearity




Simulated data

Propensity score model:
° |Og|t(PS)=(ZO + ale + a2X2+, ey a9X9

Outcome model:
* Y=Ly + [1X1 + B2Xo+, ..., BoXg + B10X10

Non-additive Scenarios:

S4: X9 = X1 X5 Binary-binary interaction
Sh: X9 = X1X5 Binary-continuous interaction

S6: X9 = X0 X, Continuous-continuous interaction




Scenarios 1 and 2: Linear outcomes

Table 1: Spearman rank correlation between overall diagnostics and bias

Balance Weights 1
Metric

Scenario 1 0.992 0.996 1.000
KS 0.137 0.134
OVL 0.012 0.016

Scenario 2 SD 0.129 0.995 1.000
KS 0.102 0.142
OVL 0.031 0.053

*SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping
coefficient; DRS: Disease risk score
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Simulated data

Decreasing sample size

| . 2%, 5000 2%, 2000 2%, 500
ncreasing

RZ
5%, 5000 5%, 2000 5%, 500

10%, 5000  10%, 2000 10%, 500



Scenario 2: Non-linear term in outcome model
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Scenario 2: Non-linear term in outcome model
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Scenarios 3-5: Interaction term in the outcome model
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Conclusions

* Main finding: Standardised mean difference in the disease
risk score is a promising overall diagnostic

* Limitations:
(1) Not robust to misspecifications in the outcome model
(2) Performance dependent on sample size

* Possible solutions:
(1) Use of CP diagnostics to check specification
(2) Using full sample or historic cohort to estimate DRS
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So, how best to assess propensity scores?

STEP 1: STEP 2: STEP 3:
Choose variables Check individual covariates Check overall balance
using using
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So, how best to assess propensity scores?

STEP 1: STEP 2: STEP 3:
Choose variables Check individual covariates Check overall balance
using using




Thank you for listening
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Scenario 2: Non-linear (stratification)

Correlation with bias
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Scenarios 3-5: Interaction terms (stratification)

Correlation with bias
Correlation with bias
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Additional weights: Binary outcome

1 p
W3 = 1+ log(ORXiy) — ;Ek_l log(ORXky)

1 p
wy =1+ \/log(ORXiy) — EEk—1\/log(0RXkY)

1 p
wsi =1+ [log(0Ryy)| =7 ) 1108(0Ry,))|

Belitser, SV et al. Measuring balance and model selection in
propensity score methods. Pharmacoepidemiology and Drug
Safety. 2011



Additional scenario: Binary outcome (matching)

Correlation with bias

— Weights 2 SD
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DRS (Linear)
Weights 4 SD
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Additional scenario: Binary outcome (stratification)
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