Propensity Score Diagnostics

Emily Granger
Jamie C. Sergeant
Mark Lunt

MANCHESTER CENTRE FOR
1824
The University of Manchester ARTHRIUSITIS
@EGranger90
MRC
Medical
Research
Council

Propensity scores are becoming increasingly popular

Figure 1: Number of propensity score publications in medical research by year

Review on the use of propensity score diagnostics

- Recent review on the use of propensity score diagnostics in the applied medical literature [Granger et al. 2020]
- Inclusion criteria:
- Publication years 2014-2016
- High-impact journals (Impact Factor > 4)
- Extracted data on:
- Research area
- Propensity score method used
- Diagnostics used

Review on the use of propensity score diagnostics

Key Findings:

- 894 studies included
- 20.9\% did not report use of any diagnostic
- 36.6\% used hypothesis tests

Aims of research

Aim 1:

Review and compare the existing propensity score diagnostics.

Aim 2:

Develop guidelines for how to build and assess propensity score models.

Aims of research

Individual Diagnostics
Overall
Diagnostics

Aim 2:

Develop guidelines for how to build and assess propensity score models.

Aims of research

Individual
Diagnostics

Overall

Diagnostics

Aim 2:

Develop guidelines for how to build and assess propensity score models.

Individual diagnostics

- t-test statistic (t)
- Percent reduction in mean difference (PR)

Mean-based

- Standardised difference (SD)

$$
3-20+0
$$

Distribution-based

Distrib
- Overlapping
coefficient

Distrib
- Overlapping
coefficient

- KolmogorovSmirnov Statistic (KS)

Cumulative prevalence of exposure

Notation: exposure indicator for subject i : E_{i}, propensity score for subject i : $P S_{i}$, sample size: n.

For continuous variable X :

- OCP $_{X}\left(X_{0}\right)=\frac{1}{n} \sum_{i: X_{i} \leq X_{0}} E_{i}$

Cumulative prevalence of exposure

Notation: exposure indicator for subject i : E_{i}, propensity score for subject i : $P S_{i}$, sample size: n.

For continuous variable X :

- $O C P_{X}\left(X_{0}\right)=\frac{1}{n} \sum_{i: X_{i} \leq X_{0}} E_{i}$
- $E C P_{X}\left(X_{0}\right)=\frac{1}{n} \sum_{i: X_{i} \leq X_{0}} P S_{i}$

Cumulative prevalence of exposure

Notation: exposure indicator for subject i : E_{i}, propensity score for subject i : $P S_{i}$, sample size: n.

For continuous variable X :

- OCP $_{X}\left(X_{0}\right)=\frac{1}{n} \sum_{i: X_{i} \leq X_{0}} E_{i}$
- $E C P_{X}\left(X_{0}\right)=\frac{1}{n} \sum_{i: X_{i} \leq X_{0}} P S_{i}$
- $D_{X}=\left|O C P_{X}-E C P_{X}\right|$

Simulated data

Propensity score model:
$\cdot \operatorname{logit}(\mathrm{PS})=\alpha_{0}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+, \ldots, \alpha_{7} X_{7}+\alpha_{8} X_{8}$

Variation between scenarios:
Correct PS:
S1: $X_{8}=0 \quad$ Linear model

Simulated data

Propensity score model:

$\cdot \operatorname{logit}(\mathrm{PS})=\alpha_{0}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+, \ldots, \alpha_{7} X_{7}+\alpha_{8} X_{8}$

Variation between scenarios:
Correct PS:
S1: $X_{8}=0 \quad$ Linear model
S2: $X_{8}=0.4\left(3.5^{X_{1}}-1\right) \quad$ Nonlinearity added (monotonic)

Simulated data

Propensity score model:

$\cdot \operatorname{logit}(\mathrm{PS})=\alpha_{0}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+, \ldots, \alpha_{7} X_{7}+\alpha_{8} X_{8}$

Variation between scenarios:

Correct PS:
S1: $X_{8}=0 \quad$ Linear model

S2: $X_{8}=0.4\left(3.5^{X_{1}}-1\right) \quad$ Nonlinearity added (monotonic)
S3: $X_{8}=X_{4} X_{5} \quad$ Binary-binary interaction

S4: $X_{8}=X_{4} X_{1} \quad$ Binary-continuous interaction
S5: $X_{8}=X_{1} X_{2} \quad$ Continuous-continuous interaction

Simulated data

Propensity score model:

$\cdot \operatorname{logit}(\mathrm{PS})=\alpha_{0}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+, \ldots, \alpha_{7} X_{7}+\alpha_{8} X_{8}$

Variation between scenarios:

Correct PS:		Incorrect PS:
S1: $X_{8}=0$	Linear model	$X_{1}=0$
S2: $X_{8}=0.4\left(3.5^{X_{1}}-1\right)$	Nonlinearity added (monotonic)	$X_{8}=0$
S3: $X_{\mathbf{8}}=\boldsymbol{X}_{\mathbf{4}} \boldsymbol{X}_{\mathbf{5}}$	Binary-binary interaction	$X_{\mathbf{8}}=\mathbf{0}$
S4: $\boldsymbol{X}_{\mathbf{8}}=\boldsymbol{X}_{\mathbf{4}} \boldsymbol{X}_{\mathbf{1}}$	Binary-continuous interaction	$\boldsymbol{X}_{\mathbf{8}}=\mathbf{0}$
S5: $\boldsymbol{X}_{\mathbf{8}}=\boldsymbol{X}_{\mathbf{1}} \boldsymbol{X}_{\mathbf{2}}$	Continuous-continuous interaction	$\boldsymbol{X}_{\mathbf{8}}=\mathbf{0}$

Scenario 1: Omission of a linear term

SD: standardised difference	KS: Kolmogorov-Smirnov statistic
t: t-test statistic	OVL: overlapping coefficient
PR: percent reduction in mean prevalence	CP: cumulative prevalence

Scenario 1: Omission of a linear term

Simulated data

Decreasing sample size

Scenario 2: Misspecification of a non-linear term

Scenarios 3-5: Omission of an interaction term

\square	standardised difference	K-S statistic
t-test statistic	-	overlapping coefficient
percent reduction in mean diff	cumulative prevalence	

Figures:

- Scenario 3 (top left) binary-binary
- Scenario 4 (top right) binary-continuous
- Scenario 5 (bottom left) continuous-continuous

Conclusions (so far)

- Mean-based diagnostics can fail to identify nonlinear misspecifications in the propensity score
- Distribution-based diagnostics least reliable at identifying omission of interactions terms.
- Cumulative prevalence diagnostics most useful for identifying all types of propensity score misspecification.

But......

NIH Public Access
 Author Manuscript

Published in final edited form as:
Am J Epidemiol. 2006 June 15; 163(12): 1149-1156.
Variable selection for propensity score models.

M. Alan Brookhart ${ }^{1}$, Sebastian Schneeweiss ${ }^{1}$, Kenneth J. Rothman ${ }^{1,2}$, Robert J. Glynn ${ }^{1,3}$ Jerry Avorn ${ }^{1}$, and Til Stürmer ${ }^{1}$. Dedicicina and Women's Hospital \& Harvard Medical School, Boston, MA

NIH Public Access
Author Manuscript
Published in final edited form as:
Pharmacoepidemiol Drug Saf. 2011 June ; 20(6): 551-559. doi:10.1002/pds.2098.

The implications of propensity score variable selection strategies in pharmacoepidemiology - an empirical illustration

Amanda R. Patrick ${ }^{1}$, Sebastian Schneeweiss ${ }^{1}$, M. Alan Brookhart ${ }^{2}$, Robert J. Glynn ${ }^{1,3}$, Kenneth J. Rothman ${ }^{4}$, Jerry Avorn ${ }^{1}$, and Til Stürmer ${ }^{2}$
${ }^{1}$ Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
${ }^{2}$ Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
${ }^{3}$ Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
${ }^{4}$ RTI Health Solutions, Research Triangle Park, NC

Abstract

Purpose-To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality and hip fracture assuming a fue mortality reduction of $<15 \%$ and no effect on hip fracture.
Methods-We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence $>5 \%$, PS variable selection strategies included none, priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios

Aims of research

Individual
 Diagnostics

Aim 2:

Overall
Diagnostics

Overall diagnostics

Which balance metric?

- Standardised difference (SD)
- Overlapping coefficient (OVL)
- Kolmogorov-Smirnov Statistic (KS)

Which weighting scheme?

Let $w_{j i}$ denote the $j^{\text {th }}$ weight for covariate i. Then:

- $w_{1 i}=\gamma_{i} \operatorname{Std} . \operatorname{Dev}\left(x_{i}\right)$ [Caruana etal 2015]
- γ_{i} is the coefficient for x_{i} obtained after regressing outcome on x_{i}.
- $w_{2 i}=\delta_{i} S t d . \operatorname{Dev}\left(x_{i}\right)$
- δ_{i} is the coefficient for x_{i} obtained after regressing outcome on all covariates.

Overall diagnostics

Simulated data

Propensity score model:

- $\operatorname{logit}(\mathrm{PS})=\alpha_{0}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+, \ldots, \alpha_{9} X_{9}$

Outcome model:

- $\mathrm{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+, \ldots, \beta_{9} X_{9}+\beta_{10} X_{10}$

Linear and Non-linear Scenarios:

S1: $X_{10}=0$	Independent baseline covariates
S2: $X_{10}=0$	Correlated baseline covariates
S3: $X_{10}=0.2\left(6.0^{X_{1}}-1\right)$	Monotonic non-linearity

Simulated data

Propensity score model:

- $\operatorname{logit}(\mathrm{PS})=\alpha_{0}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+, \ldots, \alpha_{9} X_{9}$

Outcome model:

- $\mathrm{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+, \ldots, \beta_{9} X_{9}+\beta_{10} X_{10}$

Non-additive Scenarios:

S4: $X_{10}=X_{1} X_{5}$	Binary-binary interaction
S5: $X_{10}=X_{1} X_{2}$	Binary-continuous interaction
S6: $X_{10}=X_{2} X_{7}$	Continuous-continuous interaction

Scenarios 1 and 2: Linear outcomes

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
Scenario 2	OVL	0.012	0.016	
	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

*SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping coefficient; DRS: Disease risk score

Scenarios 1 and 2: Linear outcomes

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
Scenario 2	OVL	0.012	0.016	
	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

*SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping coefficient; DRS: Disease risk score

Scenarios 1 and 2: Linear outcomes

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
Scenario 2	OVL	0.012	0.016	
	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

*SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping coefficient; DRS: Disease risk score

Scenarios 1 and 2: Linear outcomes

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
Scenario 2	OVL	0.012	0.016	
	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

*SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping coefficient; DRS: Disease risk score

Simulated data

Decreasing sample size

Scenario 2: Non-linear term in outcome model

Scenario 2: Non-linear term in outcome model

Scenarios 3-5: Interaction term in the outcome model

- Weighted SD DRS (Correctly specified)

Figures:

- Scenario 3 (top left)	binary-binary
- Scenario 4 (top right)	binary-continuous
- Scenario 5 (bottom left)	continuous-continuous

Conclusions

- Main finding: Standardised mean difference in the disease risk score is a promising overall diagnostic
- Limitations:
(1) Not robust to misspecifications in the outcome model
(2) Performance dependent on sample size
- Possible solutions:
(1) Use of CP diagnostics to check specification
(2) Using full sample or historic cohort to estimate DRS

Aims of research

Individual Diagnostics
Overall
Diagnostics

Aim 2:

Develop guidelines for how to build and assess propensity score models.

So, how best to assess propensity scores?

STEP 1:

Choose variables

STEP 2:

Check individual covariates using CP diagnostics

STEP 3:

Check overall balance using DRS

So, how best to assess propensity scores?

STEP 1:

Choose variables

STEP 2:
Check individual covariates using CP diagnostics

STEP 3:

Check overall balance using DRS

So, how best to assess propensity scores?

STEP 1:

Choose variables

STEP 2:

Check individual covariates using CP diagnostics

STEP 3:
Check overall balance using DRS

So, how best to assess propensity scores?

STEP 1:

Choose variables

STEP 2:
Check individual covariates using CP diagnostics

STEP 3:

Check overall balance using DRS

Thank you for listening

Thanks!

y

References

[1] Granger, E et al. A review of the use of propensity score diagnostics in papers published in highranking medical journals. BMC Research Methodology. 2020.
[2] Brookhart, MA et al. Variable selection for propensity score models. American Journal of Epidemiology. 2006.
[3] Patrick, AR. The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration. Pharmacoepidemiology and Drug Safety. 2011.
[4] Caruana, E et al. A new weighted balance measure helped to select the variables to be included in a propensity score model. Journal of Clinical Epidemiology. 2015.
[5] Stuart, EA et al. Prognostic score-based balance measures for propensity score methods in comparative effectiveness research. Journal of Clinical Epidemiology. 2013

Scenario 2: Non-linear (stratification)

Scenarios 3-5: Interaction terms (stratification)

Weighted SD DRS (Correctly specified)

Figures:

- Scenario 3 (top left)	binary-binary
- Scenario 4 (top right)	binary-continuous
- Scenario 5 (bottom left)	continuous-continuous

Additional weights: Binary outcome

$$
\begin{aligned}
& w_{3 i}=1+\log \left(O R_{X_{i} Y}\right)-\frac{1}{p} \sum_{k=1}^{p} \log \left(O R_{X_{k} Y}\right) \\
& w_{4 i}=1+\sqrt{\log \left(O R_{X_{i} Y}\right)}-\frac{1}{p} \sum_{k=1}^{p} \sqrt{\log \left(O R_{X_{k} Y}\right)} \\
& \left.\left.w_{5 i}=1+\left|\log \left(O R_{X_{i} Y}\right)\right|-\frac{1}{p} \sum_{k=1}^{p} \right\rvert\, \log \left(O R_{X_{k} Y}\right)\right) \mid
\end{aligned}
$$

Belitser, SV et al. Measuring balance and model selection in propensity score methods. Pharmacoepidemiology and Drug Safety. 2011

Additional scenario: Binary outcome (matching)

Additional scenario: Binary outcome (stratification)

