The Multi-Outcome Medical Deconfounder: Assessing Treatment Effects on Multiple Renal Measures

Linying Zhang, MS1, Yixin Wang, PhD2, Anna Ostopoulos, MD1, Ruijun Chen, MD1, David M. Blei, PhD2, George Hripcsak, MD, MS1, 3, 4

1Columbia University, Irving Medical Center, New York, NY; 2Weill Cornell Medical College, New York, NY; 3Medical Informatics Services, NewYork-Presbyterian Hospital, New York, NY; 4Observational Health Data Sciences and Informatics, New York, NY

Contact: linying.zhang@columbia.edu

Background

- The unobserved confounders in observational data can bias treatment effect estimates.
- Classical causal inference assumes ignorability, that there is no unobserved confounder.
- The medical deconfounder adjusts for multi-cause unobserved confounders and produces closer-to-truth treatment effect estimates.

Conclusions

The multi-outcome medical deconfounder can estimate the causal effect of multiple treatments on multiple outcomes.

Results

- Adjusting for the substitute confounder can potentially reduce bias in treatment effect estimates.
- Drugs have more similar effect on BUN and creatinine after deconfounding.

Methods

- The study cohort is from Columbia University Medical Center database in the Observational Health Data Sciences and Informatics (OHDSI) OMOP common data model (CDM) format.
- We extracted medication records and 3 lab tests: potassium, urea nitrogen, and creatinine immediately before and after treatments.
- The cohort contains about 1.4 million patients, 313 drugs and 3 renal measures.

1. The method works by fitting two models to the data.
 1. A Poisson matrix factorization (PMF) model was fit to the drug matrix and its adequacy of fit was assessed by predictive model checking. The latent variable in PMF was inferred as a substitute for the unobserved confounder.
 2. A multi-outcome Bayesian Ridge regression model to estimate treatment effects of all drugs on all outcomes.
 - We improved the efficiency of estimation by inferring the covariance matrix of the outcomes.
 - We compared the effect estimates from the model without adjusting for confounders (no control) and one adjusting for the PMF substitute confounders (deconfounder).

2. Extract EHRs from the OHDSI database

 | Factor model |

 - Fit and check a factor model
 - Estimate the substitute confounder

 | Outcome model |

 - Fit a regression model $Y_{i} \sim N(\beta_0 + \beta_1 X_{i}, \sigma^2_{Y})$
 - Estimate causal effects $E(Y|X) - E(Y|Z, A = a)$