

The Multi-Outcome Medical Deconfounder:

Assessing Treatment Effects on Multiple Renal Measures

Linying Zhang, MS¹, Yixin Wang PhD¹, Anna Ostropolets, MD¹, Ruijun Chen, MD^{1, 2}, David M. Blei, PhD¹, George Hripcsak, MD, MS^{1, 3, 4}

¹Columbia University, New York, NY; ²Weill Cornell Medical College, New York, NY;

³Medical Informatics Services, NewYork-Presbyterian Hospital, New York, NY; ⁴Observational Health Data Sciences and Informatics, New York, NY

Contact: linying.zhang@columbia.edu

Background

- The unobserved confounders in observational data can bias treatment effect estimates.
- Classical causal inference assumes ignorability, that there is no unobserved confounder.
- The medical deconfounder adjusts for multi-cause unobserved confounders and produces closer-to-truth treatment effect estimates.

Conclusions

The multi-outcome medical deconfounder can estimate the causal effect of multiple treatments on multiple outcomes.

Results

- Adjusting for the substitute confounder can potentially reduce bias in treatment effect estimates.
- Drugs have more similar effect on BUN and creatinine after deconfounding.

Data and Cohort

- The study cohort is from Columbia University Medical Center database in the Observational Health Data Sciences and Informatics (OHDSI) OMOP common data model (CDM) format.
- We extracted medication records and 3 lab tests: potassium, urea nitrogen, and creatinine immediately before and after treatments.
- The cohort contains about 1.4 million patients, 313 drugs and 3 renal measures.

Methods

- · The method works by fitting two models to the data.
- a Poisson matrix factorization (PMF) model was fit to the drug matrix and its adequacy
 of fit was assessed by predictive model checking. The latent variable in PMF was inferred
 as a substitute for the unobserved confounder.
- A multi-outcome Bayesian Ridge regression model to estimate treatment effects of all drugs on all outcomes.
- We improved the efficiency of estimation by inferring the covariance matrix of the outcomes.
- We compared the effect estimates from the model without adjusting for confounders (no control) and one adjusting for the PMF substitute confounders (deconfounder).