

A Comprehensive Comparative Effectiveness and Safety Study of the Second Antihypertensive Agent after Monotherapy at scale using the OHDSI AP Network

Yuan Lu^{1,2}, Jing Li^{1,3}, Sang Youl Rhee^{1,4}, Hua Xu^{1,5}, Nicole Pratt^{1,6}, Seng Chan You^{1,7}, Mui Van Zandt^{1,3}, Mengling Feng^{1,8}, Lei Liu^{1,9}, Ian Chi Kei Wong^{1,10}, Rae Woong Park^{1,7}, Jiyoung Hwang^{1,7}, Tatsuo Hiramatsu^{1,11}, Usman Iqbal^{1,12}, Yu-Chuan Li^{1,13}, Min-Huei Hsu^{1,13}, Jitendra Jonnagaddala¹⁴, Christian Reich^{1,3}

¹ Observational Health Data Sciences and Informatics, New York, USA; ² Center for Outcomes Research & Evaluation (CORE), Yale University, New Haven, CT, USA; ³ Real World Solutions, IQVIA, Durham, NC, USA; ⁴Kyung Hee University Medical Center, Seoul, Korea; ⁵School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA; ⁶Quality Use of Medicines and Pharmacy Research Centre, University of South Australia, Adelaide, South Australia, Australia; ⁷Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea; ⁸Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore; ⁹Shanghai Medical College of Fudan University, Shanghai, China; ¹⁰Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong Special Administrative Region, China; ¹¹Innovation & Research Support Center, International University of Health and Welfare (IUHW), Tokyo, Japan; ¹²College of Public Health, Taipei Medical University, Taipei City, Taiwan; ¹³Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei City, Taiwan; ¹⁴University of New South Wales, Australia.

Background

Hypertension is a leading cause of death and disability across the world¹. Although many antihypertensive agents are available to treat hypertension, there remains considerable uncertainty regarding the optimal choice of a second agent to added monotherapy for hypertension, which is necessary for a substantial proportion of patients. Clinical trials have not provided head-to-head comparisons of the effectiveness and safety associated with the second line antihypertensive agents after monotherapy to control blood pressure³,⁴. The lack of high-quality evidence addressing this question means that guidelines are unable to provide recommendations about the preferred choice of medication for treatment escalation⁵,⁶. A better understanding of the comparative effectiveness and safety of different classes of second antihypertensive agents added to monotherapy, with attention to relevant subgroups of patients defined by demographic, geographic and clinical factors, has a great potential to inform clinical decisions.

Methods

This study is an extension of the Large-Scale Evidence Generation and Evaluation across a Network of Databases for Hypertension (LEGEND-HTN) initiative. We pursued three aims: (1) to describe real-world treatment variation in common antihypertensive agents added to monotherapy among patients with hypertension by demographic, clinical, and geographic subgroups; (2) to determine real-world effectiveness of common antihypertensive agents added to monotherapy for three primary (acute myocardial infarction, heart failure, and stroke) and six secondary effectiveness outcomes; and (3) to determine real-world risks of adverse events and benefits on 46 safety outcomes.

We developed and implemented a systematic, large-scale observational study that provided comprehensive pairwise comparisons between dual combinations of any of the four major antihypertensive agent classes to answer questions in Aims 1-3. In contrast to a single comparison approach, this study provided a comprehensive view of the findings and their consistency across populations, drugs, and outcomes. We modelled the study on the LEGEND-HTN collaborative research evaluating the comparative effectiveness of first-line antihypertensive monotherapies recently published in The Lancet². The study followed a workflow described in Figure 1.

Figure 1. Overview of work process

and dissemination

Results

We have designed 12 cohorts based on the different combinations of the four main antihypertensive agents as the first-step feasibility study. Below are the results from the committed APAC data sources.

Cohort #	1st Drug	2nd Drug		APAC Data Sources													
			Australia				Ког	rea	Singapore			China		Taiwan	Japan		
			IQVIA	Australia*	ePBRN SWSLHD)* Aj	jou Univ*	KHMC*	SG_KTPH*	SG	i_NUH*	iHeart - Jinan*	Jiangsu*	TMUCRD*	JMDC		
1	ACEi/ARB	CCB		4,425	698	3	1,216	147	257		439						
2	ССВ	ACEi/ARB		1,418	246	6	1,487	191	217		133						
3	ACEi/ARB	Diuretic		2,204	508	3	474	12	19		31						
4	Diuretic	ACEi/ARB		268	94	1	154	2	8		7						
5	ACEi/ARB	B-blocker		1,249	268	3	392	49	177		144						
6	B-blocker	ACEi/ARB		765	210		386	98	154		128						
7	ССВ	Diuretic		72	28	3	259	15	14		6						
8	Diuretic	CCB		53	25	5	139	6	5		7						
9	ССВ	B-blocker		199	41		814	217	156		101						
10	B-blocker	ССВ		163	54	1	614	199	130		243						
11	Diuretic	B-blocker		28	14	1	43	5	3		8						
12	B-blocker	Diuretic		27	17	7	51	10	6		7						

*committed data sources

ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; CCB: calcium channel blocker; B-blocker: beta-blocker.

Conclusions

This is the first collaborative effort of the newly established OHDSI Asia Pacific group. Although the project is still undergoing, the initial analyses support the feasibility of the study and show significant variations in treatment utilization across countries. Following the LEGEND principles of open, reproducible and reliable science, this work will bridge important knowledge gaps in treatment escalation for hypertension. The contribution will be significant as it provides critical information to inform treatment decisions facing patients with hypertension, their caregivers, clinicians, policymakers and healthcare system leaders in Asia Pacific region.

Reference:

- 1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK and He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217-23.
- 2. Suchard MA, Schuemie MJ, Krumholz HM, You SC, Chen R, Pratt N, Reich CG, Duke J, Madigan D, Hripcsak G and Ryan PB. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis. Lancet. 2019;394:1816-1826.
- 3. Schuemie MJ, Hripcsak G, Ryan PB, Madigan D and Suchard MA. Robust empirical calibration of p-values using observational data. Statistics in medicine. 2016;35:3883.
- 4. Schuemie MJ, Hripcsak G, Ryan PB, Madigan D and Suchard MA. Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data. Proc Natl Acad Sci U S A. 2018;115:2571-2577.
- 5. Schuemie MJ, Cepeda MS, Suchard MA, Yang J, Tian Y, Schuler A, Ryan PB, Madigan D and Hripcsak G. How Confident Are We About Observational Findings in Health Care: A Benchmark Study. Harvard Data Science Review. 2020;2.
- 6. Whelton PK, Carey RM, Aronow WS, Casey DE, Jr., Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Jr., Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Sr., Williamson JD and Wright JT, Jr. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018;138:e426-e483.