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* Privacy challenges in multi-site studies
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Background: Privacy Challenges and
Existing Approaches for Multi-Site
Analysis




Privacy challenges in multi-site studies

» Multi-site studies: larger sample size, improved
generalizability

» HIPAA: sharing of patient protected health ®
information (PHI) often prohibited across institutions 'Iﬁll I%
» De-identified data can be shared (e.g. “limited IGISN

dataset”)

» De-identified PHI susceptible to re-identification I I

(Benitez & Malin 2010)

e

» Distributed Health Data Networks: no data
centralization

e Common data model

* Analyses performed distributively without patient-
level data transfer
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Existing Multi-Site Analysis Approaches: Meta-Analysis

» Collaborating sites send estimated coefficients and standard errors to lead site for
aggregation

» Very popular, easy to implement
* Most common analytic method in OHDSI studies

» Biased estimation in rare-event settings

» Issues with ecological bias
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Distributed Regression

» Regression model fit in distributed fashion across sites without sharing patient-level data
» Involves aggregation of summary statistics to estimate parameters

» Multi-site distributed linear regression is lossless (Chen et al. 2006)
* Estimated coefficients equivalent to those in pooled analysis

» Pooled analysis: Bpoorea = XTX)71XTY

» From each site /, obtain (X X;) and X/'Y; (aggregated summary measures)

—~ -1 ~
> Baist = (ZiXiTXi) (ZLXLTYL) — ﬁpooled
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Distributed Regression

» What if # doesn’t have a closed-form solution?
» Iterative procedures for distributed regression

* Newton-Raphson method
* Also lossless

» GLORE (distributed logistic regression)
» WebDISCO (distributed Cox regression)
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Distributed Regression: Limitations in Existing Approaches

» Iterative procedures may require several
rounds of communication

* Privacy risk, even with aggregate data transfer
(especially for very small data sets)

* [nefficient, communication takes time!

» Goal: Can we perform distributed regression
without using iterative procedure?
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Our Approach: Privacy-preserving
Distributed Algorithms (PDA)




PDA: Privacy-preserving Distributed Algorithms

1) Broadcast initial value

T i o &

Local site Site 2 Site 3 Site K

\I/

2) Share aggregated data

us)sy"thes'zp—ﬁnal results

evidence
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Surrogate Likelihood Estimation

» Communication-efficient distributed inference (Jordan et al. 2018)
* One-shot: Non-iterative communication among sites

» Approximates complete data (pooled) log-likelihood using patient-level data at only one
site (local site)

* Aggregate information obtained from collaborating (non-local) sites

* Not lossless, but typically closer approximation than meta-analysis
* Uses Taylor series expansion of complete data log-likelihood
* First-order surrogate likelihood function:

L(B) = L1(B) +{VL(B) — VL1(B)}B
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Surrogate Likelihood Estimation: Intuition

Local Initial estimate

Negative slope > shift left

Positive slope - shift right

Correcting shape of local
likelihood

Surrogate
likelihood function
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Surrogate Likelihood Estimation

» ODAL.: Algorithm for performing distributed logistic regression (Duan et al. 2020)
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Surrogate Likelihood Estimation: Distributed Cox Regression

» ODAC: Algorithm for performing distributed Cox regression (Duan et al. 2020)

event rate = 20% event rate = 5% event rate = 2% event rate = 1%
00 wu— mu— wa— || g~ L— L~ | | — |[— || |4+ |+ [+
B |
@ b
.8 [
s |
1]
©
& -0.2
o
e
3
o
" 'meta
-0.41
BIODAC

A 50V 4000 A2V T 450V
Size of large sites and small sites

& Penn Medicine



Communication-Efficient Distributed
Regression for Count Outcomes
(ODAP and ODAH)




ODAP Motivation: COVID-19 Hospitalization

» As of Sunday 11/22: > 58 million
confirmed cases, 1.38 million
deaths across 191 countries
and territories (JHU COVID-19
Dashboard)

COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) =

» Estimating demand for hospital
beds crucial for contingency
planning

» Length of stay (LoS) dependent
on disease severity

* Highly variable
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RWD Motivation: COVID-19 Hospitalization

» Interest in characterizing association between LoS and patient characteristics

» Many individual sites with COVID-19 patient data, but typically too small for proper inference

» In a pandemic, many institutions willing to collaborate!

» Goal: Devise communication-efficient algorithm for modeling LOS in COVID-19 patients
using data at several collaborating sites

» Contribution: ODAP (One-Shot Distributed Algorithm for performing Poisson regression)
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ODAP: Distributed Poisson Regression Algorithm

» Count outcomes commonly modeled using Poisson regression
* Assumption: mean = variance
* Often in practice: mean < variance (overdispersion)

— Poisson regression of overdispersed data results in biased standard errors (Cox
1984)

» Quasi-Poisson: account for extra variation in outcome by estimating dispersion and scaling
variance

* E(Y;|X) = exp(X/B) = u;
* Var(Yi|X;) = ¢, ¢ >0
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ODAP: Distributed Poisson Regression Algorithm

» Clinical data at K sites, j" site has n; unique patient records, N = Zﬁlnj total patient records

» (Y}, Xj): outcome, covariate vector for " subject at /" site

» Pooled, complete data log-likelihood function
K nj

Lu(B) = NZZY,-XiTj — exp(Xf)

j=1i=

* Requires sharing of patient-level data across sites
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ODAP: Distributed Poisson Regression Algorithm

» Distributed data network: Assume we only have patient-level data at local site

» Surrogate log-likelihood function (second-order):

~ _ — 1 _ _ _ _
L(B) = L1(B) + {VLn(B) = VL.(B)}B + 5 (B - B) {V2Ly(B) - V*L.(B)}(B - B)
e V,V?: first- and second-order gradients of log-likelihood

* VLy: weighted average of individual site gradients
 f:initial estimate for algorithm (e.g. meta-analysis estimate, local estimate)

» ODAP estimator: f? = argmaXﬂZ(ﬁ)

» V(B): inverse Hessian scaled by overdispersion estimate ¢, (5)

I Y
& Penn Medicine



A. Initialization
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Application: OneFlorida Clinical Research Consortium
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Limited dataset, patient-level RWD of 15 million
Floridians (> 50% state population)

Centralized data

Q: In patients hospitalized with COVID-19, which risk
factors are most associated with length of stay?

Study data: 4,212 COVID-19 patients from 4 clinical
sites

High overdispersion: ¢ ~ 10 (¢ = 1: no dispersion)
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ODAP RWD Application: Results

95% confidence intervals of log relative risk estimates
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ODAH Motivation: Serious Adverse Events (Pharmacovigilance)

} POSt_market drug Safety Reports rece ived by Report Seriousness
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re po rti n g 1.(i90.v:"99 ::
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» Interest in modeling serious
adverse event (SAE) FDA Adverse Events Reporting System (FAERS) Public
. Dashboard, obtained on 11/22/20.
frequency for CC patients
taking FOLFIRI
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RWD Motivation: Severe Adverse Events (Pharmacovigilance)

» Most patients do not have SAE - many zero counts (e.g. > 80%)
» High variance in quantity and quality of adverse event reporting

» Goal: Devise communication-efficient algorithm to model SAE frequency using data at
several collaborating sites

» Contribution: ODAH (One-Shot Distributed Algorithm for performing Hurdle regression)

N
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ODAH: Distributed Hurdle Regression Algorithm

» Zero-inflation: another common feature of count data in
practice
* EXcess zero counts -- more than would be
expected under traditional count distribution (e.g.
Poisson or Negative Binomial)
* Often zero-inflated: length of stay, number of
hospitalizations, lab tests ordered
» Methods for handling zero-inflated counts
» Zero-inflated regression model
* Hurdle model
II-_ In.__

00000000000000000
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ODAH: Distributed Hurdle Regression Algorithm

» Hurdle model: two-part model Plw;=1) =m;
* “Zero” part: logistic regression log (1 i ) — X7
* “Non-zero” part: zero-truncated count model '
(Poisson/Negative Binomial) |

» No shared parameters: completely independent

» Interpretation differs from zero-inflated model
* One source of zeros (sample) vs two (structural)
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ODAH: Distributed Hurdle Regression Algorithm

» Log-likelihood of Poisson-Logit hurdle: sum of Binomial, zero-truncated Poisson log-
likelihoods

L(B,y) = Ly(B) + L,(y)

» Surrogate likelihood analogous to that for ODAP
* Now have two surrogate log-likelihood functions, one for each component

» At most three rounds of non-iterative communication among sites
* Depends on choice of initial value, estimation of dispersion
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Real-World Data Application: OneFlorida CRC
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ODAH RWD Application: Results

A

Effect size
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Effect size

95% confidence intervals of log relative risk estimates
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Summary

» PDA methods are;

Accurate: High accuracy relative to pooled estimates; large advantage over meta-analysis in
rare-outcome settings

Safe: At-most three rounds of communicating aggregate data; as little as one round
Efficient: Non-iterative communication among collaborating sites

» ODAP/ODAH currently assume homogeneity, where statistical model is the same across
all sites

Estimating dispersion helps capture heterogeneity in outcome
Future extension: modify algorithms to further account for heterogeneity

» R package on CRAN soon and currently on GitHub; website in the works!
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R package: pda

» GitHub repo: https://github.com/Penncil/pda

# Install the latest version of PDA in R:
install.packages("pda")
library(pda)

# Or you can install via github:
install.packages("devtools")
library(devtools)
devtools::install_github("penncil/pda")
library(pda)



R pda Package Demo
» pda::demo(ODAL)

PDA — ODAL (One-shot Distributed Algorithm for Logistic regression)

status ™ age + sex
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R pda Package Demo
» pda::demo(ODAL)

PDA — ODAL (One-shot Distributed Algorithm for Logistic regression)
Step 1:initialize

+
B
Local site 1 Site 2

——J

Estimate (site 2)
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R pda Package Demo
» pda::demo(ODAL)

PDA — ODAL (One-shot Distributed Algorithm for Logistic regression)
Step 1:initialize

+ B
- =
Local site 1 _S_te3—
| Estimate (site 3) |
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R pda Package Demo
» pda::demo(ODAL)

PDA - ODAL (One-shot Distributed Algorithm for Logistic regression)

Step 1: initialize |initia| estimate |

+

Local site 1

Estimate (site 1)
Estimate (site 2)
Estimate (site 3)
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R pda Package Demo
» pda::demo(ODAL)

PDA — ODAL (One-shot Distributed Algorithm for Logistic regression)

Step 2: derivative

+
+
Local site 1 Site 2

— )

Derivative of logikelihood
at initial estimate (site 2)

I Y
& Penn Medicine



R pda Package Demo
» pda::demo(ODAL)

PDA - ODAL (One-shot Distributed Algorithm for Logistic regression)

Step 2: derivative

Local site 1 Site 3

— )

Derivative of logdikelihood
at initial estimate (site 3)
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R pda Package Demo
» pda::demo(ODAL)

PDA — ODAL (One-shot Distributed Algorithm for Logistic regression)

Step 3: estimate

+

Local site 1

Local data (site 1) +
Derivative of logikelihood
at initial estimate (site 2, 3)

Q Surrogate estimate
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Thank you!

Questions or ideas? Email me!
macjohn@pennmedicine.upenn.edu
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