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Outline
‣ Background

• Privacy challenges in multi-site studies
• Existing approaches for privacy-preserving multi-site analysis

‣ Our approach: Privacy-preserving Distributed Algorithms (PDA)
• Distributed regression; surrogate likelihood method
• ODAP and ODAH
• Real-world use cases

‣ Summary
• Newly available R package!



Background: Privacy Challenges and 
Existing Approaches for Multi-Site 
Analysis
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Privacy challenges in multi-site studies
‣ Multi-site studies: larger sample size, improved 

generalizability

‣ HIPAA: sharing of patient protected health 
information (PHI) often prohibited across institutions
• De-identified data can be shared (e.g. “limited 

dataset”)

‣ De-identified PHI susceptible to re-identification 
(Benitez & Malin 2010)

‣ Distributed Health Data Networks: no data 
centralization
• Common data model
• Analyses performed distributively without patient-

level data transfer
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Existing Multi-Site Analysis Approaches: Meta-Analysis

‣ Collaborating sites send estimated coefficients and standard errors to lead site for 
aggregation

‣ Very popular, easy to implement
• Most common analytic method in OHDSI studies

‣ Biased estimation in rare-event settings

‣ Issues with ecological bias
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Distributed Regression

‣ Regression model fit in distributed fashion across sites without sharing patient-level data

‣ Involves aggregation of summary statistics to estimate parameters

‣ Multi-site distributed linear regression is lossless (Chen et al. 2006)
• Estimated coefficients equivalent to those in pooled analysis

‣ Pooled analysis: !𝜷!""#$% = 𝑋&𝑋 '(𝑋&𝑌

‣ From each site i, obtain 𝑋)&𝑋) and 𝑋)&𝑌) (aggregated summary measures)

‣ !𝜷%)*+ = (∑)𝑋)&𝑋))
'( (∑)𝑋)&𝑌)) = !𝜷!""#$%
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Distributed Regression
‣ What if !𝛽 doesn’t have a closed-form solution?
‣ Iterative procedures for distributed regression

• Newton-Raphson method
• Also lossless

‣ GLORE (distributed logistic regression)
‣ WebDISCO (distributed Cox regression)

Wu et al. 2012, JAMIA Lu et al. 2015, JAMIA
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Distributed Regression: Limitations in Existing Approaches

‣ Iterative procedures may require several 
rounds of communication
• Privacy risk, even with aggregate data transfer 

(especially for very small data sets)

• Inefficient, communication takes time!

‣ Goal: Can we perform distributed regression 
without using iterative procedure?



Our Approach: Privacy-preserving 
Distributed Algorithms (PDA)



10

1) Broadcast initial value

2) Share aggregated data

…

Local site Site 2 Site 3 Site K

3)Synthesize
evidence Final results

PDA: Privacy-preserving Distributed Algorithms
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Surrogate Likelihood Estimation

‣ Communication-efficient distributed inference (Jordan et al. 2018)
• One-shot: Non-iterative communication among sites

‣ Approximates complete data (pooled) log-likelihood using patient-level data at only one 
site (local site)
• Aggregate information obtained from collaborating (non-local) sites 
• Not lossless, but typically closer approximation than meta-analysis
• Uses Taylor series expansion of complete data log-likelihood
• First-order surrogate likelihood function:

)𝐿 𝛽 = 𝐿( 𝛽 + ∇L 𝛽̅ − ∇𝐿( 𝛽̅ 𝛽
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Surrogate Likelihood Estimation: Intuition

.......

Local

Site 2

Site 3

Surrogate 
likelihood function

Initial estimate

Negative slope à shift left

Positive slope à shift right

Correcting shape of local 
likelihood
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Surrogate Likelihood Estimation

‣ ODAL: Algorithm for performing distributed logistic regression (Duan et al. 2020)
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Surrogate Likelihood Estimation: Distributed Cox Regression

‣ ODAC: Algorithm for performing distributed Cox regression (Duan et al. 2020) 



Communication-Efficient Distributed 
Regression for Count Outcomes 
(ODAP and ODAH)



16

ODAP Motivation: COVID-19 Hospitalization

‣ As of Sunday 11/22: > 58 million 
confirmed cases, 1.38 million 
deaths across 191 countries 
and territories (JHU COVID-19 
Dashboard)

‣ Estimating demand for hospital 
beds crucial for contingency 
planning

‣ Length of stay (LoS) dependent 
on disease severity
• Highly variable
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RWD Motivation: COVID-19 Hospitalization

‣ Interest in characterizing association between LoS and patient characteristics

‣ Many individual sites with COVID-19 patient data, but typically too small for proper inference

‣ In a pandemic, many institutions willing to collaborate! 

‣ Goal: Devise communication-efficient algorithm for modeling LOS in COVID-19 patients 
using data at several collaborating sites

‣ Contribution: ODAP (One-Shot Distributed Algorithm for performing Poisson regression)
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ODAP: Distributed Poisson Regression Algorithm

‣ Count outcomes commonly modeled using Poisson regression
• Assumption: mean = variance
• Often in practice: mean < variance (overdispersion)

– Poisson regression of overdispersed data results in biased standard errors (Cox 
1984)

‣ Quasi-Poisson: account for extra variation in outcome by estimating dispersion and scaling 
variance
• 𝐸 𝑌) 𝑋)) = exp 𝑋)&𝛽 = 𝜇)
• 𝑉𝑎𝑟 𝑌) 𝑋) = 𝜙𝜇), 𝜙 > 0
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ODAP: Distributed Poisson Regression Algorithm

‣ Clinical data at K sites, jth site has nj unique patient records, 𝑁 = ∑,-(. 𝑛, total patient records

‣ (Yij, Xij): outcome, covariate vector for ith subject at jth site 

‣ Pooled, complete data log-likelihood function

𝐿/ 𝛽 =
1
𝑁
@
,-(

.

@
)-(

0!

𝑌),𝑋),&𝛽 − exp(𝑋),&𝛽)

• Requires sharing of patient-level data across sites
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ODAP: Distributed Poisson Regression Algorithm

‣ Distributed data network: Assume we only have patient-level data at local site

‣ Surrogate log-likelihood function (second-order):

!𝐿 𝜷 = 𝐿# 𝜷 + ∇L$ (𝜷 − ∇𝐿# (𝜷 𝜷 +
1
2
𝜷 − (𝜷 % ∇&𝐿' (𝜷 − ∇&𝐿# (𝜷 𝜷 − (𝜷

• ∇, ∇1: first- and second-order gradients of log-likelihood
• ∇L2: weighted average of individual site gradients
• A𝜷: initial estimate for algorithm (e.g. meta-analysis estimate, local estimate)

‣ ODAP estimator: B𝜷 = argmax𝜷)𝐿 𝜷

‣ 𝑉 B𝜷 : inverse Hessian scaled by overdispersion estimate G𝜙4( )𝛽)



Site 1 
(Local Site)

Site K

Site 2

A. Initialization

…
!𝛽", !𝜎""

!𝛽#, !𝜎#"

𝛽̅

1. Collaborating 
site estimates 
sent to local 
site.

2. Initial 
estimates 
computed 
(meta-
analysis).

B. Surrogate Likelihood Estimation

Site 2

Site K

Site 1 
(Local Site)…

∇𝐿 𝛽̅ ,
∇"𝐿 𝛽̅

∇𝐿 𝛽̅ ,
∇"𝐿 𝛽̅

(𝐿(𝛽)

!𝛽

3. 
Collaborating 
site gradients 
sent to local 
site.

4. 
!𝑳(𝜷) computed 
at local site; 
!𝜷 and obtained, 
sent to each 
individual site.

C. Dispersion Estimation & 
Variance Calculation

Site 2

Site K

Site 1 
(Local Site)…

(𝜙"( +𝛽)

(𝜙#( +𝛽)

(𝜙$( +𝛽)

𝑉( !𝛽)

5. Collaborating site 
dispersion estimates 
calculated, sent to 
local site.

6. %𝝓𝒂((𝜷) calculated at 
local site, used for 
scaling variance.



22

Application: OneFlorida Clinical Research Consortium

‣ Limited dataset, patient-level RWD of 15 million 
Floridians (> 50% state population)

‣ Centralized data

‣ Q: In patients hospitalized with COVID-19, which risk 
factors are most associated with length of stay?

‣ Study data: 4,212 COVID-19 patients from 4 clinical 
sites 

‣ High overdispersion: ,𝜙 ≈ 10 ( ,𝜙 = 1: no dispersion)
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ODAP RWD Application: Results 
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ODAH Motivation: Serious Adverse Events (Pharmacovigilance)

‣ Post-market drug safety 
evaluated via adverse event 
reporting

‣ Real-world example: 
FOLFIRI chemotherapy 
treatment for colorectal 
cancer (CC)

‣ Interest in modeling serious 
adverse event (SAE) 
frequency for CC patients 
taking FOLFIRI

FDA Adverse Events Reporting System (FAERS) Public 
Dashboard, obtained on 11/22/20.
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RWD Motivation: Severe Adverse Events (Pharmacovigilance)

‣ Most patients do not have SAE à many zero counts (e.g. > 80%)

‣ High variance in quantity and quality of adverse event reporting

‣ Goal: Devise communication-efficient algorithm to model SAE frequency using data at 
several collaborating sites

‣ Contribution: ODAH (One-Shot Distributed Algorithm for performing Hurdle regression)
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ODAH: Distributed Hurdle Regression Algorithm

‣ Zero-inflation: another common feature of count data in 
practice
• Excess zero counts -- more than would be 

expected under traditional count distribution (e.g. 
Poisson or Negative Binomial)

• Often zero-inflated: length of stay, number of 
hospitalizations, lab tests ordered

‣ Methods for handling zero-inflated counts
• Zero-inflated regression model
• Hurdle model

0

1000

2000

3000

0 1 2 3 4 5 6 7 8
Y

Fr
eq
ue
nc
y

0

2500

5000

7500

0 1 2 3 4 5 6 7
Y

Fr
eq
ue
nc
y



27

ODAH: Distributed Hurdle Regression Algorithm

‣ Hurdle model: two-part model
• “Zero” part: logistic regression
• “Non-zero” part: zero-truncated count model 

(Poisson/Negative Binomial)

‣ No shared parameters: completely independent

‣ Interpretation differs from zero-inflated model
• One source of zeros (sample) vs two (structural)

𝑃 𝑤+ = 1 = 𝜋+
log

𝜋+
1 − 𝜋+

= 𝑿+,𝜷

𝑤! = 0

𝑦! = 0

𝑤! = 1

𝑃 𝑌! = 𝑦! 𝑌! > 0 =
𝑒"#!𝜆!

$!

1 − 𝑒"#! 𝑦!!

log 𝜆! = 𝒁!%𝜸
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ODAH: Distributed Hurdle Regression Algorithm

‣ Log-likelihood of Poisson-Logit hurdle: sum of Binomial, zero-truncated Poisson log-
likelihoods

𝐿 𝛽, 𝛾 = 𝐿" 𝛽 + 𝐿# 𝛾

‣ Surrogate likelihood analogous to that for ODAP
• Now have two surrogate log-likelihood functions, one for each component

‣ At most three rounds of non-iterative communication among sites
• Depends on choice of initial value, estimation of dispersion 
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Real-World Data Application: OneFlorida CRC

‣ Goal: Assess drug safety in terms of severe 
adverse event (SAE) frequency

‣ Q: Given demographics and risk factors, how 
many SAEs are expected for colorectal cancer 
patient receiving FOLFIRI?

‣ Data: 660 colorectal cancer patients taking 
FOLFIRI from three clinical sites
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ODAH RWD Application: Results 
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Summary

‣ PDA methods are: 
• Accurate: High accuracy relative to pooled estimates; large advantage over meta-analysis in 

rare-outcome settings
• Safe: At-most three rounds of communicating aggregate data; as little as one round 
• Efficient: Non-iterative communication among collaborating sites

‣ ODAP/ODAH currently assume homogeneity, where statistical model is the same across 
all sites
• Estimating dispersion helps capture heterogeneity in outcome
• Future extension: modify algorithms to further account for heterogeneity

‣ R package on CRAN soon and currently on GitHub; website in the works!
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R package: pda

‣ GitHub repo: https://github.com/Penncil/pda
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R pda Package Demo
‣ pda::demo(ODAL)
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R pda Package Demo
‣ pda::demo(ODAL)
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R pda Package Demo
‣ pda::demo(ODAL)
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R pda Package Demo
‣ pda::demo(ODAL)
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R pda Package Demo
‣ pda::demo(ODAL)
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R pda Package Demo
‣ pda::demo(ODAL)
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R pda Package Demo
‣ pda::demo(ODAL)
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Thank you!
Questions or ideas? Email me! 

macjohn@pennmedicine.upenn.edu


