

Mackenzie Edmondson
PhD Candidate in Biostatistics
Department of Biostatistics, Epidemiology, and Informatics
University of Pennsylvania, Perelman School of Medicine

November 24, 2020 – OHDSI Community Call

Outline

Background

- Privacy challenges in multi-site studies
- Existing approaches for privacy-preserving multi-site analysis
- Our approach: Privacy-preserving Distributed Algorithms (PDA)
 - Distributed regression; surrogate likelihood method
 - ODAP and ODAH
 - Real-world use cases

Summary

Newly available R package!

Background: Privacy Challenges and Existing Approaches for Multi-Site Analysis

Privacy challenges in multi-site studies

- Multi-site studies: larger sample size, improved generalizability
- ► HIPAA: sharing of patient protected health information (PHI) often prohibited across institutions
 - De-identified data can be shared (e.g. "limited dataset")
- De-identified PHI susceptible to re-identification (Benitez & Malin 2010)
- Distributed Health Data Networks: no data centralization
 - Common data model
 - Analyses performed distributively without patientlevel data transfer

Existing Multi-Site Analysis Approaches: Meta-Analysis

- Collaborating sites send estimated coefficients and standard errors to lead site for aggregation
- Very popular, easy to implement
 - Most common analytic method in OHDSI studies
- Biased estimation in rare-event settings
- ▶ Issues with ecological bias

Distributed Regression

- ▶ Regression model fit in distributed fashion across sites without sharing patient-level data
- Involves aggregation of summary statistics to estimate parameters
- ▶ Multi-site distributed linear regression is **lossless** (Chen et al. 2006)
 - Estimated coefficients equivalent to those in pooled analysis
- ▶ Pooled analysis: $\widehat{\beta}_{pooled} = (X^T X)^{-1} X^T Y$
- From each site *i*, obtain $(X_i^T X_i)$ and $X_i^T Y_i$ (aggregated summary measures)

$$\widehat{\boldsymbol{\beta}}_{dist} = (\sum_{i} X_{i}^{T} X_{i})^{-1} (\sum_{i} X_{i}^{T} Y_{i}) = \widehat{\boldsymbol{\beta}}_{pooled}$$

Distributed Regression

- What if $\hat{\beta}$ doesn't have a closed-form solution?
- Iterative procedures for distributed regression
 - Newton-Raphson method
 - Also lossless
- GLORE (distributed logistic regression)
- WebDISCO (distributed Cox regression)

Wu et al. 2012, JAMIA

Lu et al. 2015, *JAMIA*

Distributed Regression: Limitations in Existing Approaches

- Iterative procedures may require several rounds of communication
 - Privacy risk, even with aggregate data transfer (especially for very small data sets)
 - Inefficient, communication takes time!

▶ Goal: Can we perform distributed regression without using iterative procedure?

Our Approach: Privacy-preserving Distributed Algorithms (PDA)

PDA: Privacy-preserving Distributed Algorithms

Surrogate Likelihood Estimation

- ▶ Communication-efficient distributed inference (Jordan et al. 2018)
 - One-shot: Non-iterative communication among sites
- Approximates complete data (pooled) log-likelihood using patient-level data at only one site (local site)
 - Aggregate information obtained from collaborating (non-local) sites
 - Not lossless, but typically closer approximation than meta-analysis
 - Uses Taylor series expansion of complete data log-likelihood
 - First-order surrogate likelihood function:

$$\tilde{L}(\beta) = L_1(\beta) + \{\nabla L(\bar{\beta}) - \nabla L_1(\bar{\beta})\}\beta$$

Surrogate Likelihood Estimation: Intuition

Surrogate Likelihood Estimation

▶ ODAL: Algorithm for performing distributed logistic regression (Duan et al. 2020)

Surrogate Likelihood Estimation: Distributed Cox Regression

▶ ODAC: Algorithm for performing distributed Cox regression (Duan et al. 2020)

Communication-Efficient Distributed Regression for Count Outcomes (ODAP and ODAH)

ODAP Motivation: COVID-19 Hospitalization

- ▶ As of Sunday 11/22: > 58 million confirmed cases, 1.38 million deaths across 191 countries and territories (JHU COVID-19 Dashboard)
- Estimating demand for hospital beds crucial for contingency planning
- Length of stay (LoS) dependent on disease severity
 - Highly variable

RWD Motivation: COVID-19 Hospitalization

- ▶ Interest in characterizing association between LoS and patient characteristics
- ▶ Many individual sites with COVID-19 patient data, but typically too small for proper inference
- In a pandemic, many institutions willing to collaborate!
- ▶ Goal: Devise communication-efficient algorithm for modeling LOS in COVID-19 patients using data at several collaborating sites
- ▶ Contribution: ODAP (One-Shot Distributed Algorithm for performing Poisson regression)

ODAP: Distributed Poisson Regression Algorithm

- Count outcomes commonly modeled using Poisson regression
 - Assumption: mean = variance
 - Often in practice: mean < variance (overdispersion)
 - Poisson regression of overdispersed data results in biased standard errors (Cox 1984)
- Quasi-Poisson: account for extra variation in outcome by estimating dispersion and scaling variance
 - $E(Y_i|X_i) = \exp(X_i^T\beta) = \mu_i$
 - $Var(Y_i|X_i) = \phi \mu_i, \quad \phi > 0$

ODAP: Distributed Poisson Regression Algorithm

- ▶ Clinical data at K sites, j^{th} site has n_j unique patient records, $N = \sum_{j=1}^{K} n_j$ total patient records
- (Y_{ij}, X_{ij}) : outcome, covariate vector for i^{th} subject at j^{th} site
- ▶ Pooled, complete data log-likelihood function

$$L_N(\beta) = \frac{1}{N} \sum_{j=1}^{K} \sum_{i=1}^{n_j} Y_{ij} X_{ij}^T \beta - \exp(X_{ij}^T \beta)$$

Requires sharing of patient-level data across sites

ODAP: Distributed Poisson Regression Algorithm

- Distributed data network: Assume we only have patient-level data at local site
- ▶ Surrogate log-likelihood function (second-order):

$$\tilde{L}(\boldsymbol{\beta}) = L_1(\boldsymbol{\beta}) + \{\nabla L_N(\overline{\boldsymbol{\beta}}) - \nabla L_1(\overline{\boldsymbol{\beta}})\}\boldsymbol{\beta} + \frac{1}{2}(\boldsymbol{\beta} - \overline{\boldsymbol{\beta}})^T \{\nabla^2 L_N(\overline{\boldsymbol{\beta}}) - \nabla^2 L_1(\overline{\boldsymbol{\beta}})\}(\boldsymbol{\beta} - \overline{\boldsymbol{\beta}})$$

- ∇ , ∇^2 : first- and second-order gradients of log-likelihood
- ∇L_N : weighted average of individual site gradients
- $\overline{\beta}$: initial estimate for algorithm (e.g. meta-analysis estimate, local estimate)
- ▶ ODAP estimator: $\tilde{\beta} = \operatorname{argmax}_{\beta} \tilde{L}(\beta)$
- $V(\widetilde{\beta})$: inverse Hessian scaled by overdispersion estimate $\widehat{\phi}_a(\widetilde{\beta})$

A. Initialization

B. Surrogate Likelihood Estimation

C. Dispersion Estimation & Variance Calculation

Application: OneFlorida Clinical Research Consortium

- ► Limited dataset, patient-level RWD of 15 million Floridians (> 50% state population)
- Centralized data
- Q: In patients hospitalized with COVID-19, which risk factors are most associated with length of stay?
- Study data: 4,212 COVID-19 patients from 4 clinical sites
- ▶ High overdispersion: $\hat{\phi} \approx 10$ ($\hat{\phi} = 1$: no dispersion)

ODAP RWD Application: Results

ODAH Motivation: Serious Adverse Events (Pharmacovigilance)

- Post-market drug safety evaluated via adverse event reporting
- Real-world example: FOLFIRI chemotherapy treatment for colorectal cancer (CC)
- Interest in modeling serious adverse event (SAE) frequency for CC patients taking FOLFIRI

FDA Adverse Events Reporting System (FAERS) Public Dashboard, obtained on 11/22/20.

RWD Motivation: Severe Adverse Events (Pharmacovigilance)

- Most patients do not have SAE → many zero counts (e.g. > 80%)
- High variance in quantity and quality of adverse event reporting
- ▶ **Goal:** Devise communication-efficient algorithm to model SAE frequency using data at several collaborating sites
- ▶ Contribution: ODAH (One-Shot Distributed Algorithm for performing Hurdle regression)

ODAH: Distributed Hurdle Regression Algorithm

- Zero-inflation: another common feature of count data in practice
 - Excess zero counts -- more than would be expected under traditional count distribution (e.g. Poisson or Negative Binomial)
 - Often zero-inflated: length of stay, number of hospitalizations, lab tests ordered
- Methods for handling zero-inflated counts
 - Zero-inflated regression model
 - Hurdle model

ODAH: Distributed Hurdle Regression Algorithm

- Hurdle model: two-part model
 - "Zero" part: logistic regression
 - "Non-zero" part: zero-truncated count model (Poisson/Negative Binomial)
- ▶ No shared parameters: completely independent
- Interpretation differs from zero-inflated model
 - One source of zeros (sample) vs two (structural)

ODAH: Distributed Hurdle Regression Algorithm

 Log-likelihood of Poisson-Logit hurdle: sum of Binomial, zero-truncated Poisson loglikelihoods

$$L(\beta, \gamma) = L_1(\beta) + L_2(\gamma)$$

- Surrogate likelihood analogous to that for ODAP
 - Now have two surrogate log-likelihood functions, one for each component
- ▶ At most three rounds of non-iterative communication among sites
 - Depends on choice of initial value, estimation of dispersion

Real-World Data Application: OneFlorida CRC

- Goal: Assess drug safety in terms of severe adverse event (SAE) frequency
- Q: Given demographics and risk factors, how many SAEs are expected for colorectal cancer patient receiving FOLFIRI?
- Data: 660 colorectal cancer patients taking FOLFIRI from three clinical sites

ODAH RWD Application: Results

Summary

- ▶ PDA methods are:
 - Accurate: High accuracy relative to pooled estimates; large advantage over meta-analysis in rare-outcome settings
 - Safe: At-most three rounds of communicating aggregate data; as little as one round
 - **Efficient:** Non-iterative communication among collaborating sites
- ODAP/ODAH currently assume homogeneity, where statistical model is the same across all sites
 - Estimating dispersion helps capture heterogeneity in outcome
 - Future extension: modify algorithms to further account for heterogeneity
- ▶ R package on CRAN soon and currently on GitHub; website in the works!

R package: pda

▶ GitHub repo: https://github.com/Penncil/pda

```
# Install the latest version of PDA in R:
install.packages("pda")
library(pda)

# Or you can install via github:
install.packages("devtools")
library(devtools)
devtools::install_github("penncil/pda")
library(pda)
```

pda::demo(ODAL)

PDA - ODAL (One-shot Distributed Algorithm for Logistic regression)

status ~ age + sex

pda::demo(ODAL)

Step 1: initialize

pda::demo(ODAL)

Step 1: initialize

pda::demo(ODAL)

pda::demo(ODAL)

Step 2: derivative

pda::demo(ODAL)

Step 2: derivative

pda::demo(ODAL)

Step 3: estimate

Acknowledgements

Yong Chen, PhD

Chongliang Luo, PhD

Rui Duan, PhD

Jiayi Tong, BS

https://penncil.med.upenn.edu

Thank you!

Questions or ideas? Email me! macjohn@pennmedicine.upenn.edu