

Risk of HCQ alone and in combination with azithromycin in the treatment of RA: a multinational, retrospective study

Jennifer Lane & James Weaver On behalf of COVID-19 Studyathon 2020

Where did the idea come from?

Traditionally Anti-malarial- unknown mechanism

Widely used Disease Modifying Anti-Rheumatic Drug (DMARD) -> EULAR; ACR guidelines for Rheumatoid Arthritis- unknown mechanism

COVID studies in Asia

Raoult-France

Le professeur Didier Raoult, dans son bureau à Marseille, le 26 février 2020.

Pandemic Media March 2020...

Pandemic Media March 2020...

REVEALED: Hydroxychloroquine was prescribed to 300,000 more patients than usual in March after Trump claimed it was a 'game-changer' for coronavirus treatment

- Hydroxychloroquine is an anti-malaria drug that is most commonly used to treat lupus and rheumatoid arthritis
- Researchers looked at prescriptions of the drug between October 2019 and February 2020 and then from February 2020 to March 2020
- In March, President Trump hailed the drug as a 'game-changer' for treatment of coronavirus, after early results of a small-scale study were promising
- Between February and March, prescriptions for the drug increase by 86.2% from 367, 346 to 683,999

Malaria Drug Helps Virus Patients Improve, in Small Study

A group of moderately ill people were given hydroxychloroquine, which appeared to ease their symptoms quickly, but more research is needed.

COVID-19 studyathon

EHDEN

Info Symposium 2020 Forum Github Past Events Photos Contact

Login

We regret to inform you that the 2020 European Symposium "From data to impact: the journey towards improving clinical practice" is cancelled due to the COVID-19 outbreak

More Info

Known Side effects: 'first doing no harm'

Hydroxychloroquine

- Retinal damage
- Cardiac conduction disorders (QT prolongation)
- Cardiomyopathy; ventricular hypertrophy
- Proximal myopathy
- Leucopenia, thrombocytopenia
- hypoglycaemia
- Bronchospasm
- Acute hepatic failure
- Psychosis, suicidality

Macrolide antibiotics

- GI disorder
- pancreatitis
- Cardiac conduction disorders (QT prolongation)
- leucopenia
- Electrolyte disturbance
- Aggravation of myasthenia gravis
- Hallucinations
- Hearing impairment

Before the studyathon... what was actually known?

Systematic review:

PubMed EMBASE (1974- present) ICTRP ClinicalTrial.gov Chinese Clinical Trial Registry BioRxiv and MedRxiv

Before the studyathon... what was actually known?

Systematic review:

= 5458 original articles reviewed

PubMed EMBASE (1974- present) ICTRP ClinicalTrial.gov Chinese Clinical Trial Registry BioRxiv and MedRxiv

Identify the safety of: HCQ , and HCQ + azithromycin In a historical population of RA users

Range of serious adverse events Mortality

to run different methodologies simultaneously (new user cohort design; self controlled case series)

ENED

European Network of Centres for Pharmacoepidemiology and Pharmacovigilance

	Home	Sitemap	Q&A	Notice Board	Links	Contact Us			
	Home >	View Study							
News									
About Us									
ENCePP Documents	Ad	ministrativ	e Details	Targets of t	he Study	/ Methodologic	alAspects	Documents	
Training in PhEpi and PV									
	Statu	s: Finalised					First regis	tered on: 02/04/2020	
Code of Conduct							Last up	dated on: 06/07/2020	
Standards & Guidances	1 54	udu idantii	fication						
ENCePP Study Seal	1. 50	udy identi	Incation						
Public Consultation	EU P	AS Register	Number		EUPA	EUPAS34497			
Glossary of terms	Offic	Official title				Hydroxychloroquine safety and potential efficacy as an antiviral prophylaxis in light of potential wide-spread use in COVID-19: a multinational, large-scale network			
Resources Database					coho	rt and self-control	led case seri	ies study	
	Stud	y title acro	nym						
Partners forum	Stud	y type			Obse	rvational study			
ELL DAS Desister	Brief	description	n of the s	tudy	The c poter	overarching objective itial efficacy as an a	e is to investig ntiviral prophy	ate safety and laxis in light of	
LO PAS Register	Wee	this study -		hu a namulatara	poter	itial wide-spread use	e in COVID-19)	
	was	this study r	equested	by a regulator?	NO				
About EU PAS Register	Is the Plan	e study req (RMP)?	uired by	a Risk Manageme	nt Not a	applicable			

Goal is to attribute causality to this association; only valid under certain assumptions

Among patients with rheumatoid arthritis...

 Longitudinal, time-stamped encounters, deidentified, patient-level data including diagnoses, procedures, prescriptions/dispensing, some lab measurements and results

Distributed database network study

Source	Population	Patients	Туре
VA	US (Veterans)	12M	Claims
DAGermany	Germany (general population)	37M	EHR
IMRD	UK (general population)	15M	EHR
AmbEMR	US (general population)	49M	EHR
OpenClaims	US (general population)	300M	Claims
CPRD	UK (general population)	13M	EHR
CCAE	US (commercially insured, <65y)	142M	Claims
MDCD	US (Medicaid enrollees)	26M	Claims
MDCR	US (commercially insured, ≥65y)	10M	Claims
IPCI	Netherlands (general population	2.5M	EHR
JMDC	Japan (insured general population)	5.5M	Claims
Clinformatics	US (commercially insured)	85M	Claims
OptumEHR	US (general population)	93M	EHR
SIDIAP	Catalonia (general population)	7.7M	EHR

Distributed database network study

14 database 6 countries 7 administrative claims 7 electronic health records **Real world heterogeneity of** patient experience

Data partners contributing to this study remain custodians of their individual patient-level health information and hold either exemption from institutional review boards or approval for participation

SIDIAP	Catalonia (general population)	7.7M	EHR	
--------	--------------------------------	------	-----	--

Comparative cohort study design

Eligibility criteria:

- First exposure after Sept 1, 2000
- ≥365 days prior observation
- ≥18 years at index

Treatment strategies:

- 1. HCQ vs SSZ
- 2. HCQ+AZM vs HCQ+AMX

Causal contrasts:

- On-treatment effect
- Fixed 30d effect

Active comparators and propensity score stratification to control for observed confounding

- Active comparator, new user design nested within RA population
- Further balanced baseline covariates using propensity score¹ stratification
- Propensity-score: predicted probability of exposure, given observed baseline characteristics
 - Propensity scores created by large-scale regularized regression² (a data-adaptive, predictive model that reduces overfitting to optimize covariate balance on thousands of covariates)
 - Each patient has a propensity score and is characteristically similar to other patients with similar propensity scores
- Patients distributed across PS quintiles

Describerum DD, Dubie DD, Dismetrille, 1002-70(1), 41, FE, Jei and (10,1002/bismetr/70,1,41

- Rosenbaum PR, Rubin DB. Biometrika. 1983;70(1):41–55. doi.org/10.1093/biomet/70.1.41
 Tian Y, Schuemie MJ, Suchard MA. Int J Epidemiol. 2018;47(6):2005-2014. doi:10.1093/ije/dyy120
- Itan Y, Schuemie MJ, Suchard MA. Int J Epidemiol. 2018;47(6):2005-2014. doi:10.1093/ije/dyyJ
 Austin P. Stat Med. 2009 Nov 10;28(25):3083-107. doi: 10.1002/sim.3697.

Good example of covariate balance³

Bad example of covariate balance

Empirical calibration using negative control outcomes to control for unobserved confounding

- Negative control outcome experiments for each comparison where the null hypothesis of no effect is believed to be true
 - E.g. What is the risk of apnea between HCQ vs. SSZ?
- Estimated HRs for 65 negative control outcomes to generate an empirical null distribution
- Based on this error distribution, we calibrated the HRs and 95% CIs to reflect any observed, residual error^{1,2}
- Control unmeasured confounding and other sources of systematic and random error
- PS and calibration methods demonstrate good operating characteristics across clinical questions and data sources³

Good example of calibration

Bad example of calibration

Schuemie MJ et al. Interpreting observational studies: why empirical calibration is needed to correct p-values. *Statistics in medicine* 2014; 33(2):209-18
 Schuemie MJ et al. Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data. *Proceedings of the National Academy of Sciences of the United States of America* 2018; 115(11): 2571-7

3. Schuemie MJ et al. How Confident Are We About Observational Findings in Health Care: A Benchmark Study. Harvard Data Science Review, 2(1). https://doi.org/10.1162/99608f92.147cc28e

Self-controlled case series design

Overall counts

Exposure	Ν
HCQ	956 374
SSZ	310 350
HCQ+AZM	323 122
HCQ+AMX	351 956

- On-treatment duration of HCQ therapy ranged from median of 43 days (IQR 43–193) in AmbEMR to 338 days (106–1507) in CPRD
- On-treatment during of HCQ+AZM therapy ranged from median of 16 days (IQR 16–1381) in DAGermany to 91 days (IQR 16–880) in CPRD

Outcome availability

Source	Any setting	Inpatient	All-cause mortality	CV mortality
VA	\checkmark	1	✓	✓
DAGermany	√	1		
IMRD	√		✓	✓
AmbEMR	\checkmark			
OpenClaims	\checkmark	√		
CPRD	\checkmark		✓	✓
CCAE	\checkmark	√		
MDCD	√	1		
MDCR	√	√		
IPCI	√	1	√	
JMDC	√	1		
Clinformatics	✓	✓	✓	✓
OptumEHR	✓	✓		
SIDIAP	✓		✓	

- Hospital-based events unavailable in primary care records:
 - CPRD, IMRD, SIDIAP
- All-cause mortality only available in:
 - CPRD, IMRD, IPCI, Clinformatics, SIDIAP, VA
- CV mortality only available in:
 - CPRD, IMRD, Clinformatics, VA

Diagnostics passed

Source	HCQ vs SSZ	AZM vs AMX
VA	√	✓
DAGermany	√	
IMRD	√	
AmbEMR	√	✓
OpenClaims	√	✓
CPRD	√	
CCAE	√	✓
MDCD	√	✓
MDCR	√	✓
IPCI		
JMDC		
Clinformatics	√	✓
OptumEHR	√	✓
SIDIAP		

- Estimates are reported only where diagnostics passed:
 - ASMD < 0.1
 - Non-zero counts in both treatment arms during TAR*
 - Any Residual error observed in empirical null distribution corrected through calibration

* On-treatment time-at-risk unavailable in Optum EHR

Study population characteristics in CCAE

• Majority of patients between 50-65 years (~55-60%)

• HCQ vs SSZ before PS stratification:

- 1 women (82.0 vs 74.3%)
- ① Systemic Lupus Erythematosus (1.5 vs 0.5%)
- Q Crohn's disease (0.6 vs 1.8%)
- \$\bar{P}\$ Psoriasis (3.0 vs 8.0%)
- Ulcerative colitis (0.6 vs 1.9%)
- Immunosuppressants (39.6 vs 53.0%)
- • Is Systemic corticosteroids (72.9 vs 76.9%)

• HCQ+AZM vs HCQ+AMZ before PS stratification:

- ① Acute respiratory disease (62.5 vs 50.7%)
- 1 Pneumonia (6.8 vs 4.3%)
- ① Drugs for obstructive airway diseases (43.6 vs 37.0%)
- ① Systemic corticosteroids (42.5 vs 37.4%)
- Q Acute sinusitis (14.7 vs 18.5%)
- Q Analgesics (32.0 vs 37.7%)

 Achieved PS strata-weighted covariate balance for HCQ vs SSZ and HCQ+AZM vs HCQ vs AMX in many data sources; blinded results where covariate balance not achieved

Figure 2: Source-specific and meta-analytic-specific severe adverse event risk estimates for HCQ versus SSZ and HCQ plus AZM versus HCQ plus AMX new users during 30-day (intention-to-treat) follow-up

CV mortality, chest pain/angina, and heart failure during 30d time-at-risk

	HCQ vs SSZ				HCQ plus AZM vs HCQ p	lus AMX		
	Calibrated HR (95% CI)	I ²			Calibrated HR I ² (95% CI)			
Cardiovascular-related mortality								
Clinformatics	1.04 (0.31-3.41)				1.76 (0.56-5.57)		•	
VA	2.47 (0.45-13.69)				1.98 (1.00-3.91)			
Meta-analysis	1.36 (0.51-3.63)	<0.01			2.19 (1.22-3.95) <0.0	1 —	→	
Chest pain or angina								
AmbEMR	1.08 (0.71-1.66)		+			• •		
CCAE	0.91 (0.72-1.14)		_ + _	HCC) vs SSZ in	cidence	e rates l	/1k PYs)
Clinformatics	0.82 (0.66-1.01)		_ + _					
CPRD	0.90 (0.36-2.23)						lib wata	
DAGermany	0.41 (0.08-2.06)	-	•	and	meta-ana	aivtic ca	liprate	a nazara
IMRD	1.11 (0.39-3.17)							
MDCD	0.96 (0.58-1.59)			ratio	DC (0E% C			
MDCR	0.93 (0.66–1.30)		+	Iau	JS (35/0 C	15/		
Open Claims	0.91 (0.83-1.00)		-+		-	-		
OptumEHR	1.15 (0.95-1.40)		↓ •					
VA	1.04 (0.73-1.48)		•	Outco	ome		SS7 IR	cHR (95% Cl)
Meta-analysis	0.96 (0.84-1.09)	<0.01	-\$				•••=	
Heart failure					ortolity (2 00	2.00	4 20 (0 54 2 02)
AmbEMR	1.17 (0.56–2.45)				onality	3.08	3.80	1.36 (0.51-3.63)
CCAE	1.40 (0.50-3.90)							
Clinformatics	1.20 (0.74–1.95)			Chest	pain/angina	59 86	57 90	0.96 (0.84-1.09)*
CPRD	1.32 (0.09–19.00)		•	011000	panirangina	00.00	01.00	
DAGermany	0.65 (0.10-4.06)		•	11	f = !]	40.00	44.04	
IMRD	5.14 (0.29-89.87)	-		Heart	tallure	16.28	14.34	1.05 (0.89-1.25)*
MDCD	1.83 (0.36-9.40)			L				
MDCR	0.75 (0.42–1.34)							
Open Claims	0.94 (0.80–1.11)			*800	S results cons	istent		
OptumEHR	1.25 (0.91-1.73)		+	000		ISTOLI		
VA	1.28 (0.70-2.34)			_		1		I
Meta-analysis	1.05 (0.89–1.25)	<0.01	->		1.22 (1.02–1.45) 0.2	3 ->		
		0.25	0.5 1	2 4	0.25	0.5 1	2 4 6	
			↓				→	
			Favours HCQ Favours	SSZ		Favours HCQ Favo	ours HCQ	
						pius Azivi pius]

Figure 2: Source-specific and meta-analytic-specific severe adverse event risk estimates for HCQ versus SSZ and HCQ plus AZM versus HCQ plus AMX new users during 30-day (intention-to-treat) follow-up

Figure 2: Source-specific and meta-analytic-specific severe adverse event risk estimates for HCQ versus SSZ and HCQ plus AZM versus HCQ plus AMX new users during 30-day (intention-to-treat) follow-up

Figure 3: Source-specific and meta-analytic specific severe adverse event risk estimates for HCQ versus SSZ and HCQ plus AZM versus HCQ plus AMX new users during long-term (on-treatment) follow-up

	HCQ vs	SSZ		HCQ plus	HCQ plus AZM vs HCQ plus AMX					
	Calibrat (95% Cl	ted HR I ²		Calibrated (95% Cl)	Calibrated HR I ² (95% CI)					
Cardiovascular-related mortality										
Clinformatics	1.97 (1.	25-3·12)			-1.58)					
CPRD	0.74 (0-	-23-2-37)		Not report	ted					
VA	1.69 (1.	27-2-25)	_	1.22 (0.91	-1.65)	→				
Meta-analysis	1.65 (1.	12-2-44) 0-25	→	1.20 (0.96	-1.50) <0.01					
Chest pain or angina										
AmbEMR	1.07 (0									
CCAE	1.00 ((7 in aid		$+ \alpha \alpha \left(/ 1 \downarrow D \right)$					
Clinformatics	0-99 (<mark>(</mark>	Incu vs 33		ence ra	tes (/ 1k P i	(S)				
CPRD	0·92 ((
DAGermany	0-86 (and mota	-analyti	ic calib	rated haza	rd				
IMRD	0.81 ((and meta	anaryu	ic callu	ateu naza					
MDCD	1.07 (0									
MDCR	1.06 ((ratios (95)	ratios (95% Cls)							
Open Claims	1.00 ((1						
VA	1.02 (0	Outcome	HCQ IR	SSZ IR	SSZ IR cHR (95% CI					
Meta-analysis	1.01 (0					·/				
Heart failure		C)/mortality	1 20	202	1 65 (1 10 0 0					
AmbEMR	1.04 ((4.39	2.03	1.05 (1.12-2.2	14) <mark>-</mark>				
CCAE	0·96 (
Clinformatics	1.04 ((• • •					
CPRD	1.40 ((HCO+AZIV	I VS HC	J+AZN	Incidence					
DAGermany	0-49 (
IMRD	1.30 (0	ratas (/1k	DVc) ar	ad maata	analytic					
MDCD	0-85 ((rates (/ IK	PTS) ar	ia meta	a-analytic					
MDCR	0.94 (_						
Open Claims	1.03 (0	calibrated	hazaro	l ratios	(95% Clc)					
VA	1.04 ((cambrated	mazarc	iatios						
Meta-analysis	1.04 ((
		Outcome	AZM IR	AMX IR	cHR (95% C					
		CV mortality	9.03	7.59	1.20 (0.96-1.5	50) s AMX				
igure 3: Source-specific and meta-analy	ytic specif				• • • • • • • • • • • • • • • • • • •	rm				

Figure 3: Source-specific and meta-analytic specific severe adverse event risk estimates for HCQ versus SSZ and HCQ plus AZM versus HCQ plus AMX new users during long-term (on-treatment) follow-up

Figure 3: Source-specific and meta-analytic specific severe adverse event risk estimates for HCQ versus SSZ and HCQ plus AZM versus HCQ plus AMX new users during long-term (on-treatment) follow-up

All-cause mortality, MI, CV events, cardiac arrhythmia, bradycardia, TIA, stroke, VTE, GI bleeding, acute renal failure, ESRD, hepatic failure, and acute pancreatitis during <u>30d and on-treatment time-at-risk</u>

	HCQ vs SSZ				HCQ plus AZM vs I	HCQ plus A	MX	
	Calibrated HR (95% CI)	l ²			Calibrated HR (95% CI)	ľ		
30-day follow-up								
All-cause mortality	0.76 (0.44-1.32)	0.21			1.36 (0.94–1.97)	<0.01	+	->
Myocardial infarction	1.15 (0.92-1.43)	<0.01	+~		1.07 (0.88–1.30)	<0.01	->	_
Cardiovascular events	1.01 (0.87-1.16)	<0.01	\rightarrow		Not reported			
Cardiac arrhythmia	0.90 (0.78-1.03)	<0.01	-~		Not reported			
Bradycardia	0.88 (0.66-1.16)	<0.01	_<		0.93 (0.70-1.25)	<0.01		_
Transient ischaemic attack	1.17 (0.90-1.53)	<0.01	+~		1.01 (0.71-1.44)	0.20	\rightarrow	
Stroke	1.16 (0.93-1.45)	<0.01	+~		1.11 (0.91-1.36)	<0.01	-10	-
Venous thromboembolism	0.96 (0.81-1.13)	<0.01	-\$		0.99 (0.83-1.18)	0.17	-~	
Gastrointestinal bleeding	1.09 (0.89-1.33)	<0.01	- \		1.02 (0.85-1.22)	0.03		-
Acute renal failure	1.03 (0.88-1.20)	<0.01			Not reported			
End-stage renal disease	1.07 (0.59-1.93)	0.11	>	-	1.14 (0.76-1.69)	<0.01		<u> </u>
Hepatic failure	0.67 (0.45-1.01)	<0.01			0.88 (0.56-1.39)	<0.01		
Acute pancreatitis	0.97 (0.72-1.30)	<0.01	_ \ _		0.94 (0.69-1.27)	<0.01		_
On-treatment follow-up								
All-cause mortality	Not reported				0.95 (0.83-1.08)	0.19	-~	
Myocardial infarction	1.11 (0.86-1.44)	<0.01			1.02 (0.95-1.09)	<0.01	¢	
Cardiovascular events	1.02 (0.79–1.31)	<0.01	->		1.01 (0.95–1.07)	0.29	\$	
Bradycardia	1.09 (0.84-1.42)	<0.01	>		0.92 (0.84-1.00)	<0.01	\diamond	
Transient ischaemic attack	1.04 (0.80-1.35)	<0.01	->		1.02 (0.94–1.11)	<0.01	÷	
Stroke	Not reported				0.99 (0.92-1.06)	<0.01	4	
/enous thromboembolism	1.00 (0.77-1.30)	0.29			1.06 (0.97–1.15)	0.28	Þ	
Gastrointestinal bleeding	Not reported				1.01 (0.93–1.10)	0.13	÷	
Acute renal failure	1.18 (0.91–1.52)	0.30	+~		0.98 (0.93-1.02)	<0.01	4	
End-stage renal disease	1.23 (0.92-1.63)	<0.01	+~		0.93 (0.82–1.05)	<0.01	~	
Hepatic failure	1.06 (0.79-1.42)	<0.01	_~~		0.93 (0.77-1.12)	0.07		
Acute pancreatitis	0.99 (0.76–1.29)	<0.01			1.02 (0.92–1.14)	<0.01	\diamond	
		0.25	0.5 1	2 4		0.25	0.5 1	2
		F	avours HCQ Favou	irs SSZ		Fa	avours HCQ plus AZM	Favours HCQ plus AMX

Figure 1: Meta-analytic estimates for HCQ versus SSZ and HCQ plus AZM versus HCQ plus AMX new users during 30-day (intention-to-treat) and long-term (on-treatment) follow-up

AMX=amoxicillin. AZM=azithromycin. HCQ=hydroxychloroquine. HR=hazard ratio. SSZ=sulfasalazine.

All-cause mortality, MI, CV events, cardiac arrhythmia, bradycardia, TIA, stroke, VTE, GI bleeding, acute renal failure, ESRD, hepatic failure, and acute pancreatitis during <u>30d and on-treatment time-at-risk</u>

	HCQ vs SSZ			HCQ plus AZM vs H	ICQ plus A	MX		
	Calibrated HR (95% CI)	l ²		Calibrated HR (95% CI)	l²	_		
30-day follow-up								No increased risk
All-cause mortality	0.76 (0.44-1.32)	0.21		1.36 (0.94–1.97)	<0.01	+	→	NO IIICIEdseu IISK
Myocardial infarction	1.15 (0.92–1.43)	<0.01	+~	1.07 (0.88–1.30)	<0.01	-~~	≻	absorved scross most
Cardiovascular events	1.01 (0.87–1.16)	<0.01	÷	Not reported				observed across most
Cardiac arrhythmia	0.90 (0.78-1.03)	<0.01	~	Not reported				
Bradycardia	0.88 (0.66-1.16)	<0.01	>	0.93 (0.70-1.25)	<0.01		-	remaining outcomes*
Transient ischaemic attack	1.17 (0.90–1.53)	<0.01	+~	1.01 (0.71–1.44)	0.20	\rightarrow	-	
Stroke	1.16 (0.93–1.45)	<0.01	+~	1.11 (0.91–1.36)	<0.01	+	≻	- HCO potential
Venous thromboembolism	0.96 (0.81-1.13)	<0.01	-	0.99 (0.83–1.18)	0.17	\rightarrow	-	
Gastrointestinal bleeding	1.09 (0.89–1.33)	<0.01	->	1.02 (0.85-1.22)	0.03	\rightarrow	-	reduced 30d risk of
Acute renal failure	1.03 (0.88-1.20)	<0.01	- > -	Not reported				
End-stage renal disease	1.07 (0.59–1.93)	0.11		1.14 (0.76–1.69)	<0.01		~	honatic failure (0.67
Hepatic failure	0.67 (0.45-1.01)	<0.01		0.88 (0.56–1.39)	<0.01		_	hepatic failure (0.07
Acute pancreatitis	0.9/(0./2-1.30)	<0.01		0.94 (0.69–1.27)	<0.01		-	
All-cause mortality	Not reported			0.95 (0.83-1.08)	0.19	-		[0.45-1.01])*
Myocardial infarction	1.11 (0.86-1.44)	<0.01	_~	1.02 (0.95-1.09)	<0.01	J		
Cardiovascular events	1.02 (0.79-1.31)	<0.01		1.01 (0.95-1.07)	0.29	Į		- HCQ+AZIVI potential
Bradycardia	1.09 (0.84-1.42)	<0.01	_~_	0.92 (0.84-1.00)	<0.01	Å		
Transient ischaemic attack	1.04 (0.80-1.35)	<0.01		1.02 (0.94-1.11)	<0.01			increased 30d risk of
Stroke	Not reported			0.99 (0.92-1.06)	<0.01	A state		
Venous thromboembolism	1.00 (0.77-1.30)	0.29	_ <u></u>	1.06 (0.97-1.15)	0.28	¢	>	all-cause mortality
Gastrointestinal bleeding	Not reported			1.01 (0.93-1.10)	0.13	\$		an cause mortancy
Acute renal failure	1.18 (0.91–1.52)	0.30	+~	0.98 (0.93-1.02)	<0.01	4		
End-stage renal disease	1.23 (0.92–1.63)	<0.01	+~	0.93 (0.82–1.05)	<0.01	~		(1.50 [0.94-1.97])
Hepatic failure	1.06 (0.79-1.42)	<0.01	¢	0.93 (0.77-1.12)	0.07			*SCCS results consistent
Acute pancreatitis	0.99 (0.76-1.29)	<0.01		1.02 (0.92–1.14)	<0.01		-	
		0.25	0.5 1 2 4		0.25	0.5 1	2	
		I	Favours HCQ Favours SSZ		Fa	avours HCQ	Favours HC	Ω.

Figure 1: Meta-analytic estimates for HCQ versus SSZ and HCQ plus AZM versus HCQ plus AMX new users during 30-day (intention-to-treat) and long-term (on-treatment) follow-up

AMX=amoxicillin. AZM=azithromycin. HCQ=hydroxychloroquine. HR=hazard ratio. SSZ=sulfasalazine.

Rheumatoid Arthritis

Increased cardiovascular short term risks HCQ + AZM vs HCQ + AMX Long term risks HCQ vs ssz

Limitations Misclassification; non concordance; incomplete recording SAEs Relative risk

Extrapolation to COVID-19?

- Short term use
- Higher doses
- Different population

Power of the PrePrint...

HOME ABOU

Search

Comments (7)

Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid wide-spread use for COVID-19: a multinational, network cohort and self-controlled case series study

 Jennifer C.E Lane, James Weaver, Kristin Kostka, Talita Duarte-Salles, Maria Tereza F. Abrahao, Heba Alghoul, Osaid Alser, Thamir M Alshammari, Patricia Biedermann, Edward Burn, Paula Casajust, Mitch Conover, Aedin C. Culhane, Alexander Davydov, Scott L. DuVall, Dmitry Dymshyts, Sergio Fernández Bertolín, Kristina Fišter, Jill Hardin, Laura Hester, George Hripcsak, Seamus Kent, Sajan Khosla, io Spyros Kolovos, Christophe G. Lambert, Johan ver der Lei, Kristine E. Lynch, Rupa Makadia, Andrea V. Margulis, Michael E. Matheny, Paras Mehta, Daniel R. Morales, Henry Morgan-Stewart, Mees Mosseveld, Danielle Newby, Fredrik Nyberg, Anna Ostropolets, Rae Woong Park, io Albert Prats-Uribe, Gowtham A. Rao, Christian Reich, Jenna Reps, Peter Rijnbeek, Selva Muthu Kumaran Sathappan, Martijn Schuemie, Sarah Seager, Anthony Sena, Azza Shoaibi, Matthew Spotnitz, Marc A. Suchard, Joel Swerdel, Carmen Olga Torre, David Vizcaya, Haini Wen, Marcel de Wilde, Seng Chan You, Lin Zhang, Oleg Zhuk, Patrick Ryan, io Daniel Prieto-Alhambra

doi: https://doi.org/10.1101/2020.04.08.20054551

This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.

Forbes

36,377 views | Apr 10, 2020, 05:59pm EDT

Hydroxychloroquine And Azithromycin For COVID-19: Benefits TBD, Risks Clear

Harlan Krumholz Former Contributor

Healthcare

Impact on Regulatory Bodies

Medicines 🗸 Human regulatory 🗸 Veterinary regulatory 🗸 Committees 🗸 News & events 🗸 Partners & networks 🗸

COVID-19: reminder of risk of serious side effects with chloroquine and hydroxychloroquine <share

News 23/04/2020

Chloroquine and hydroxychloroquine are known to potentially cause heart rhythm problems, and these could be exacerbated if treatment is combined with other medicines, such as the antibiotic azithromycin, that have similar effects on the heart.

Recent studies^{1,2} have reported serious, in some cases fatal, heart rhythm problems with chloroquine or hydroxychloroquine, particularly when taken at high doses or in combination with the antibiotic azithromycin.

Chloroquine and hydroxychloroquine are currently authorised for

treating malaria and certain autoimmune diseases. In addition to side effects affecting the heart, they are known to potentially cause liver and kidney problems, nerve cell damage that can lead to seizures (fits) and low blood sugar (hypoglycaemia).

DA U.S. FOOD & DRUG

ADMINISTRATION

Impact on Regulatory Bodies

+ Home / Drugs / Drug Safety and Availability / FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems

FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems

Does not affect FDA-approved uses for malaria, lupus, and rheumatoid arthritis

f Share 🎔 Tweet 🛛 in Linkedin 🖾 Email 🔒 Print

Drug Safety and Availability

Information about Nitrosamine Impurities in Medications

Drug Alerts and Statements

Medication Guides

Drug Safety Communications

July 1, 2020 Update: A summary of the FDA review of safety issues with the use of hydroxychloroquine and chloroquine to treat hospitalized patients with COVID-19 is now available. This includes reports of serious heart rhythm problems and other safety issues, including blood and lymph system disorders, kidney injuries, and liver problems and failure.

June 15, 2020 Update: Based on ongoing analysis and emerging scientific data, FDA has revoked the emergency use authorization (EUA) to use hydroxychloroquine and chloroquine to treat COVID-19 in certain hospitalized patients when a clinical trial is

Content current as of: 07/01/2020

Regulated Product(s) Drugs

Topic(s) Safety - Issues, Errors, and Problems

Health Topic(s) Infectious Disease Coronavirus

Thank you to all the studyathon

OHDSI Consortium

