Renin-angiotensin system blockers and susceptibility to COVID-19: an international open science cohort study

Marc A Suchard, MD PhD, on behalf of the ICARIUS team
Background and Call for Evidence

- People with hypertension (HTN) have worse COVID-19 outcomes
- Speculation that ACEi/ARBs taken for HTN may be detrimental
 - Coronaviruses interact with RAS ACE-2 receptor, allowing them to enter the cell
- Speculation that ARBs may be protective
 - Prevent the angiotensin I receptor from being stimulated

<table>
<thead>
<tr>
<th>Authors</th>
<th>COVID Patients</th>
<th>Location</th>
<th>Key Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guan et al</td>
<td>1099</td>
<td>China</td>
<td>24% HTN in severe disease (vs 13% overall)</td>
</tr>
<tr>
<td>Zhou et al</td>
<td>191</td>
<td>China</td>
<td>HTN Univariate OR 3.1 (1.6-6.0) for death</td>
</tr>
</tbody>
</table>
1. Prevalent ACEi or ARB use is associated with a difference in risk of COVID-19 infection relative to an active comparator in hypertensive patients.

2. Prevalent ACEi or ARB use in COVID-19+ patients is associated with a difference in risk of intensive outcomes relative to an active comparator in hypertensive patients.
 - This work is still in progress and will not be included in this presentation.
<table>
<thead>
<tr>
<th>Data sources</th>
<th>Country / sample size</th>
<th>Data elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Systems for Research in Primary Care (SIDIAP) database</td>
<td>Spain ≈ 6 million</td>
<td>GP EHR linked to hosp admits
Dx, Rx, labs, demographics, COVID-19 tests/Dx</td>
</tr>
<tr>
<td>US Department of Veterans Affairs (VA) database</td>
<td>U.S. ≈ 12 million</td>
<td>Linked administrative claims
Dx, Rx, labs, lifestyle, sociodemographics, COVID-19 tests/Dx</td>
</tr>
<tr>
<td>Columbia University Irving Medical Center data warehouse (CUIMC)*</td>
<td>U.S. (NYC) ≈ 6 million</td>
<td>Health-system EHR
Dx, Rx, labs, demographics, COVID-19 tests/Dx,</td>
</tr>
</tbody>
</table>

* Analyses implemented in CUIMC did not pass a priori diagnostic assessments. Thus, this presentation includes only limited description of those analyses and findings.
1000s of hours of dedication

Team SIDIAP
- Talita Duarte-Salles
- Maria Aragon
- Sergio Fernandez-Bertolin
- Andrea Pistillo

Team VA
- Scott DuVall
- Aize Cao
- Kristine Lynch
- Michael Matheny
Study Schematic

Eligibility
- Prior database enrollment ≥180 days
- No observed history of the outcome Any time prior to 0 days
- ≥1 hypertension Dx Any time prior to 0 days

Exposure
- No observed Rx for any other antihypertensive
- monotherapy analysis only -180 to 0 days

Adjustment
- Covariate assessment: conditions, drugs, procedures, measurements, devices, and observations Any time prior to 0 days
- -180 to 0 days
- -30 to 0 days

Outcomes
- Censoring: Rx discontinuation, data disenrollment, death, outcome (below)
- 1) COVID-19 diagnosis
- 2) COVID-19 hospitalization
- 3) Hospitalization with pneumonia
- 4) Hospitalization with pneumonia, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), sepsis

Follow-up +1 to end of data availability

Recently observed Rx for target or comparator drug
- last target drug Rx observed between 11/1/19 and 1/31/20

* It is not possible for patients to meet criteria to enter both target and comparator cohorts
Statistical Methods

• Large-scale propensity-score (PS) models selected using a data-driven regularized regression approach

• Balanced covariates using two PS approaches:
 – 1:N variable-ratio PS-matching
 – PS stratification using 5 quintiles

• Estimated hazard ratios (HRs) using cox proportional hazards models
 – Conditioned on PS strata or matching unit

• Empirical calibration using up to 123 negative controls
 – Negative control outcomes identified using a data-rich algorithm
 – Calibrated each HR estimate and 95% CI using the empirical null distributions

• These analyses do not statistically account for multiple testing
Patient and event counts

<table>
<thead>
<tr>
<th></th>
<th>SIDIAP (Spain)</th>
<th></th>
<th>VA (U.S.)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients</td>
<td>Events</td>
<td>Patients</td>
<td>Events</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>ACE/ARB vs CCB/THZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monotherapy</td>
<td>37,796</td>
<td>14,003</td>
<td>500</td>
<td>184</td>
</tr>
<tr>
<td>Combo therapy</td>
<td>45,239</td>
<td>19,007</td>
<td>627</td>
<td>250</td>
</tr>
<tr>
<td>ACE vs CCB/THZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monotherapy</td>
<td>30,787</td>
<td>14,003</td>
<td>398</td>
<td>184</td>
</tr>
<tr>
<td>Combo therapy</td>
<td>36,323</td>
<td>29,239</td>
<td>485</td>
<td>399</td>
</tr>
<tr>
<td>ARB vs. CCB/THZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monotherapy</td>
<td>6,753</td>
<td>14,003</td>
<td>95</td>
<td>184</td>
</tr>
<tr>
<td>Combo therapy</td>
<td>9,194</td>
<td>39,427</td>
<td>137</td>
<td>519</td>
</tr>
<tr>
<td>ACE vs. ARB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monotherapy</td>
<td>30,787</td>
<td>6,753</td>
<td>398</td>
<td>95</td>
</tr>
<tr>
<td>Combo therapy</td>
<td>56,465</td>
<td>19,148</td>
<td>758</td>
<td>283</td>
</tr>
</tbody>
</table>

	T	C	T	C
ACE/ARB vs CCB/THZ	320,450	229,063	145	183
ACE vs CCB/THZ	656,274	443,061	345	335
ARB vs. CCB/THZ	457,557	639,500	218	494
ACE vs. ARB	235,348	229,063	96	183
	457,557	639,500	218	494
	201,503	854,224	127	574
	235,348	82,872	96	46
	865,931	395,156	441	282
Baseline covariate balance: ACE/ARB vs. CCB/THZ monotherapy

- Baseline differences in diabetes, CKD, heart disease, heart failure, AF
- PS-methods capably balanced baseline covariates, except for PS-stratification in the CUIMC cohort
Calibrated HRs: ACE/ARB vs. CCB/THZ
Calibrated HRs: ACE vs. ARB
Key Limitations

• Defining drug exposure using “prevalent” not “new” use
 – We may adjust for mediators on the causal pathway between exposure and outcome
 – COVID-19 unlikely to have affected decision to initiate one drug versus another
 – Depletion of susceptible is likely minimal
 – Biological mechanisms relating to ACE2 expression may require chronic exposure

• Defining COVID-19 using diagnostic codes and positive test results underestimates the number of true cases
 – May vary by data partner, depending on local-area testing strategies
 – Analyses of COVID-19 hospitalization outcome produced concordant results
Conclusions

• These findings support regulatory and clinical society guidance not to modify ACE/ARB treatment on the basis of COVID-19 risk

• Marginal differences observed between ACEs and ARBs do not warrant class switching to reduce COVID-19 susceptibility
Acknowledgments

Contributors to this work

Daniel R Morales
Mitchell M Conover
Seng Chan You
Nicole Pratt
Kristin Kostka
Talita Duarte Salles
Sergio Fernandez Bertolin
Maria Aragon
Scott L. DuVall
Kristine Lynch
Thomas Falconer
Kees van Bochove
Cynthia Sung
Michael E. Matheny
Christophe G. Lambert
Fredrik Nyberg
Thamir M Al Shammani
Andrew E. Williams
Rae Woong Park
James Weaver
Anthony G. Sena
Martijn J. Schuemie
Peter R. Rijnbeek
Ross D. Williams
Jennifer C.E Lane
Albert Prats Uribe
Lin Zhang
Carlos Areia
Harlan Krumholz
Daniel Prieto Alhambra
Patrick B Ryan
George Hripcsak
Marc A Suchard

Partial funding provided through NIH U19 AI135995 and R01 LM006910
Links to additional documentation

• Open-source OHDSI CohortMethod R package:
 – https://ohdsi.github.io/CohortMethod/

• Pre-specified ICARIUS protocol and start-to-finish open and executable source code
 – https://github.com/ohdsi-studies/Covid19Icarius

• Interactive web application presenting study diagnostics and results for all study effects
 – https://data.ohdsi.org/IcariusSusceptibility

• Pre-print manuscript, publicly posted to MedRxiv:
 – https://www.medrxiv.org/content/10.1101/2020.06.11.20125849v1