

SARS-Cov-2 Large-scale Longitudinal Analyses on the comparative safety and effectiveness of treatments under evaluation for COVID-19 across an international observational data network:

The SCYLLA STUDY

Complementary evidence to inform the patient journey

Head-2-head comparisons - Rationale

 Guidelines (eg NIH) and clinicians have divided COVID-19 therapies into Anti-viral, and 'Adjunctive' therapies

- The latter are divided further into:
 - Anti-thrombotics
 - Immune-based therapy
 - Antibiotics
 - Concomitant (antihypertensive, statin, antidiabetic, others)

Head-2-head comparisons – Rationale (2)

- Many trials ongoing
- Many already published
- Most in some 'living' meta-analysis of RCTs
- All study treatment/s vs placebo or 'standard care'
- But ...
 - Are all corticosteroids equally safe?
 - Are anticoagulants better than antithrombotics?
 - Are IL-inh safer than corticosteroids?
 - **—** ...

Research

Drug treatments for covid-19: living systematic review and network metaanalysis

BMJ 2020; 370 doi: https://doi.org/10.1136/bmj.m2980 (Published 30 July 2020) Cite this as: *BMJ* 2020;370:m2980

METHODS

Full protocol available at http://www.encepp.eu/encepp/viewRe source.htm?id=37226

New user cohorts in Scylla - OUTPATIENT

To assess comparative effectiveness and safety among treatments administered after COVID positive testing and prior to hospitalization

New user cohorts in Scylla – INPATIENT (pre-ICU)

To assess comparative effectiveness and safety among treatments administered on the date of admission of hospitalization and prior to intensive services

DESIGN AND ANALYTICS

- New user, active comparator, cohort designs
- Large-scale propensity scores observed confounding
- Negative control outcomes and empirical calibration unobserved confounding

DESIGN AND ANALYTICS (2)

Diagnostics

- 1. Power/sample size for each drug-outcome-setting
- 2. Propensity score models and overlap
- 3. Covariate imbalance < 0.1 SD
- 4. Systematic error = negative control outcomes

RESULTS Somewhat predictable challenges...

PS FITTING

 Instrumental variables 'sneaking' into our PS models. Eg 'chemotherapy or iv administration'

2-step SOLUTION:

- 1. Look at correlation between concepts and T/C cohorts
- 2. Exclude those with a high correlation coefficient

DIAGNOSTICS FAILED FOR MANY T-C

- Plethora of medicines used for COVID-19
- Relatively rarely find 'clean' new user cohorts

OUTCOME:

- 1. Mostly inpatient treatments pass diagnostics
- 2. Only large cohorts make it to the analysis

SCYLLA Patient-level Drug User Characterisation

Preliminary findings – web app data.ohdsi.org/ScyllaCharacterization/

Drug and setting-specific, across data source characterisation

Show 25 v entries				Search:	
Covariate Name	CDM_OPTUM_EHR_COV (n = 222)	ID_v1239	cdm_premier_covid_v1260 (n = 1,020)		HM (n = 216)
	CDM_OPTU	JM_EHR_COVID_v1239_pct	cdm_premier_cov	id_v1260_pct	HM_pct 🔷
age group: 00-04		<2.3%		2.6%	
age group: 05-09		<2.3%		<0.5%	
age group: 10-14		<2.3%		<0.5%	
age group: 15-19		<2.3%		0.8%	
age group: 20-24		2.7%		2.0%	
age group: 25-29		3.2%		4.2%	
age group: 30-34		5.0%		4.1%	
age group: 35-39		5.4%		4.7%	<2.3%
age group: 40-44		5.0%		5.4%	<2.3%
age group: 45-49		5.4%		6.9%	5.6%
age group: 50-54		6.8%		7.2%	5.1%
age group: 55-59		12.2%		9.4%	9.7%
age group: 60-64		9.0%		9.7%	8.8%
age group: 65-69		9.0%		9.9%	14.8%
age group: 70-74		12.2%		8.1%	13.9%
age group: 75-79		8.1%		8.0%	13.4%
age group: 80-84		4.5%		7.4%	9.7%
age group: 85-89		7.7%		6.6%	6.5%
age group: 90-94				2.3%	9.7%
age group: 95-99					<2.3%
gender = female		59.5%		49.5%	31.0%
gender = male		40.5%		50.5%	69.0%

Eg Antivirals – Premier

Immune-based therapies in HM (L) and Optum EHR (R)

PRELIMINARY FINDINGS – Heparin vs Aspirin

A relevant clinical research question

• Is anticoagulation worth it (beneficial, not too risky) in patients with COVID-19?

Public health impact? % of heparin/AAS users in Charybdis

Heparin use in patients diagnosed or tested + for COVID

Aspirin use in patients diagnosed or tested + for COVID

(n = 2.544)

Trends in % of heparin users

Trends in % of AAS users

What's the evidence?

- Large multi-platform RCT ATTACC/REMAP-CAP/ACTIV-4a (still a <u>preprint</u>) suggests reduction in morbidity and mortality in COVID wards but not in ICU/severe patients
- An analysis of VA in BMJ suggests 30% reduction in mortality
- https://www.bmj.com/content/372/bmj.n311
- Question is: would platelet aggregation safer? And would it do the trick?

Scylla findings (to date) – Heparin vs Aspirin Diagnostics IQVIA Hospital CDM

 PS overlap -> PS matching to 'common support' area should enable ATT estimation

 No relevant (SMD>0.1) observable imbalance after PS matching

Scylla findings (to date) – Heparin vs Aspirin Outcomes - effectiveness

PRELIMINARY FINDINGS: Do not interpret as yet ©

Rx initiation (index)	ARDS HR [95CI]	Total CVE HR [95CI]	ICU HR [95CI]	Death HR [95CI]	Discharge HR [95CI]
On admission	_	0.75 [0.63- 0.89]	_	1.28 [1.08- 1.53]	0.89 [0.81- 0.98]
During admission	0.97 [0.89- 1.05]	0.77 [0.66-	_	1.35 [1.15- 1.58]	0.83 [0.76- 0.90]

Scylla findings (to date) – Heparin vs Aspirin Outcomes - safety

PRELIMINARY FINDINGS: Do not interpret as yet ©

Rx initiation (index)	GI Bleed HR [95CI]	Haemorr Stroke HR [95CI]	AKI HR [95CI]	Liver failure HR [95CI]
On admission	1.09 [0.65-	2.24 [0.69-	1.51 [1.32-	0.92 [0.47-
	1.85]	10.03]	1.73]	1.80]
During admission	1.09 [0.72-	1.38 [0.54-	1.50 [1.34-	1.43 [0.85-
	1.65]	4.01]	1.68]	2.48]

Scylla findings (to date) – Heparin vs Aspirin "Positive" and Neg Control Outcomes

PRELIMINARY FINDINGS: Do not interpret as yet ©

Rx initiation (index)	Isch stroke HR [95CI]	Acute MI HR [95CI]	VTE HR [95CI]
Admission day	0.59 [0.35- 0.99]	0.61 [0.48- 0.77]	2.33[1.70-3.22]
During admission	0.36 [0.19- 0.65]	0.73 [0.60- 0.89]	2.27[1.72-3.05]

30-day

What do well powered NCO look like?

From Lane J et al. HCQ safety.

Lancet Rheum 2020

So what next?

- 1. Look into index date misclassification w VTE (luckily we are working on this as part of AESI rates work)
- 2. Look for additional/alternative negative control outcomes
- 3. Run the Scylla estimation package in additional databases (e-mail me prietoalhambra@ohdsi.org)
- 4. Wait for more data to accrue in the same data sources ...

So what next?

- 1. Look into index date misclassification w VTE (luckily we are working on this as part of AESI rates work)
- 2. Look for additional/alternative negative control outcomes
- 3. Run the Scylla estimation package in additional databases (e-mail me prietoalhambra@ohdsi.org)
- 4. Wait for more data to accrue in the same data sources ...
- 5. All of the above ©

Questions?