Supporting COVID-19 patient management with data

Standing up a clinical data science team and getting answers in 2 weeks

Alison Callahan PhD, Jose Posada PhD

April 22 2021
The team

- Faculty sponsor: Nigam Shah
- EMR Data specialists
 - Gomathi Krishnan
 - Jose Posada
- Data scientists
 - Alison Callahan
 - Birju Patel
- Informatics fellows
 - Dev Dash
 - Arjun Gokhale

- Requesting Clinicians
 - Ron Li
 - Kevin Schulman
 - Will Collins
- End users: Department of Medicine Task Force on COVID clinical guidelines
 - Kevin Schulman
 - Lisa Shieh
 - Ron Li
 - Charles Liao
 - Jingkun (Ginger) Yang
Using practice based evidence to guide how we respond to the COVID surge

- Fast paced changes in patient care needs call for quick but informed decision making

- Key challenge during COVID surge: how to safely manage and discharge patients while preserving hospital capacity

- Evidence needed to assess
 1) is it safe to discharge patients on home O_2,
 2) is it safe to manage patients with HFNC on the floor, and
 3) how can we better risk stratify for complications such as VTE?
The process

• Formalize questions using the PICO format
• Define cohort and variable definitions for each question
• Pull the data corresponding to each cohort and variable from STARR-OMOP and Clarity
• Sanity check the data by chart review and preliminary analyses
• Conduct the analyses to answer the question
• Write a report summarizing our findings
Questions tackled so far

- Compared to patients not discharged on oxygen, are patients discharged with home oxygen more likely to be readmitted within 30 days?
- Among adult COVID+ patients with high oxygen needs, what is the rate of transfer to the ICU? What is the rate of intubation/mechanical ventilation?
- DO COVID+ patients with elevated admission D-dimer have a higher rate of DVT/PE or transfer to ICU compared to those with normal D-dimer?
- DO COVID+ patients with elevated admission CRP have a higher rate of DVT/PE or transfer to ICU compared to those with normal CRP?
Translating a question into a cohort definition

• Question
 Among adult COVID+ patients with high oxygen needs, what is the rate of transfer to the ICU? What is the rate of intubation/mechanical ventilation?

• Our formulation
 Among adult patients (≥18 years old) admitted with a COVID-19 diagnosis (within 1 day before date of admission or during inpatient stay) or positive SARS-CoV-2 test result (within 14 days before date of admission, or during inpatient stay), and who did not have a DNR order and received at least 6 LPM O₂ at any time, how many were transferred to the ICU? How many of those patients were intubated and/or placed on mechanical ventilation?
OMOP-CDM linked with Stanford internal Databases

- Unique patient identifier
- Merged Dataset

STARR-OMOP Variables
- Demographics
- Sars-COV2, DDIMER, CRP labs with LOINC codes
- Visit Classification (Inpatient, ER, ICU)
- Flowsheets (LPM)

SHC Clarity Variables
- Do not resuscitate orders
- Mechanical Ventilation duration
We reused CHARYBDIS Phenotypes
Results from our descriptive analyses

14% of patients with high oxygen need (31% of those transferred to the ICU) were intubated and placed on mechanical ventilation.

<table>
<thead>
<tr>
<th></th>
<th>Transferred to ICU</th>
<th>Not transferred to ICU</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intubated</td>
<td>42</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Not intubated</td>
<td>93</td>
<td>111</td>
<td>204</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>111</td>
<td>246</td>
</tr>
</tbody>
</table>

Interpretation: Relatively low (14%) of patients requiring > 6L O₂ end up needing intubation, suggesting 6L O₂ threshold for ICU transfer may be relaxed if ICU capacity is constrained.
Challenges

- Identifying patients with a COVID diagnosis code who were not really COVID patients
 - Only apparent after chart review
- Effectively processing flowsheet data
 - Millions of rows!
- Pulling the relevant ventilation details from procedure orders
 - Relies on temporality and duration of orders
- Excluding clinically implausible oxygen records
 - Clinical expertise + deep familiarity with the data
- Tracking down and managing data anomalies
 - e.g. patients with a DNI/DNR order “look” different in the data
Take-aways

• Data summaries are helpful, independent of statistical analyses
• 80% of our effort was in getting the data pulls done, and done correctly
 – The analyses were the easy part!
• > 300 hours of collective effort in a very short period
 – Amazing collaboration and communication: the team’s diversity of skills and willingness to participate in long working calls and Slack threads were essential to making this happen.
• Use of both STARR-OMOP and Clarity data was essential