EMPOWER: Accelerating access to iEMR Data

Anton van der Vegt
EMPOWER: Purpose

1. Deliver capability to leverage data from the EMR:
 i. For health service evaluation including practice and quality improvement
 ii. For observational cohort studies

2. Develop a world class electronic phenobank for:
 i. Developing automated clinical decision support
 ii. Providing real-time predictive analytics
 iii. Facilitating cheaper clinical research and a platform for rapidly translating and applying research findings into clinical practice
Queensland Health (QH) has the largest, and only, state-wide Electronic Medical Record (EMR) system across Australia.

The EMR database consists of over 6000 tables and 100,000 fields of data.

The potential for secondary re-use of this data to improve clinical outcomes through targeted data access (e.g., dashboards), research and practice improvement is immense.
However, **database complexity** and **limited expertise** means that:

1. Accessing data directly by non-technical staff (e.g., clinicians & researchers) is not possible outside of existing pre-built reports
2. Identification of desirable data is very slow and requires the support of experts
3. Even for technical experts, selecting desirable data is iterative, prone to error and requires rigorous manual validation
4. Each project to generate a data product is bespoke, with little or no re-use, especially across disparate QH teams
5. The provenance of data on data products is difficult, or not possible, to track back to validated definitions
The ready-made recipe for building research capability from EMRs

source: https://www.d4l.io/blog/leverage-OHDSI-OMOP-common-data-model-for-medical-research/
But is it ready-made for the healthcare organisation too?

How do we:

1. Integrate this architecture with other healthcare organisation data products, such as reports & dashboards?

2. Understand the lineage of data from data products to dictionary definitions, data entry screens, data sources and transformations?

3. Re-use and build artefacts (e.g. ML models) and knowledge along the way?

4. Re-integrate the outputs of research back to clinical workflows to realise the patient benefits?

5. Govern these processes?

source: https://www.d4l.io/blog/leverage-OHDSI-OMOP-common-data-model-for-medical-research/
Empower: Roadmap

- **Foundation**: Providing foundational iEMR definition capabilities
- **Data Selection**: Facilitating iEMR data access
- **Research Models**: Building Research capability
Queensland Integrated Element Tracker (QUIET)

Release 1 completed

Foundation

Providing foundational iEMR access capabilities
QUIET: Typical workflow

1. ESTABLISH GOVERNANCE
2. CREATE/FIND DICTIONARY DEFINITIONS
3. MODEL DATA AND LINK TO DICTIONARY (TECH PERSON)
4. DEFINE DATA OUTPUT, E.G. DASHBOARD AND LINK TO MODEL DATA
5. COMMISSION DATA OUTPUT

User access/rights:
- Edit artefacts
- Approve
- Audit trails

Validated definitions:
- Variables
- Computed items
- Cohorts

Models are extraction methods – requires expert to perform

Data Products:
- Dashboards
- Reports
- Research Projects

Standardised process
Benefits of Foundation Layer

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build and re-use knowledge</td>
<td>e.g. all meta-data is constructed and searchable for future clinicians/researchers</td>
</tr>
<tr>
<td>Inherit-knowledge</td>
<td>build cohorts from prior cohorts</td>
</tr>
<tr>
<td>Data lineage</td>
<td>from data product (e.g. report/dashboard/research data set) -> data model -> data definition</td>
</tr>
<tr>
<td>Dependency management</td>
<td>to understand the impact of changing definitions and models – which data products are impacted?</td>
</tr>
<tr>
<td>Standardising</td>
<td>validation and commissioning of data products</td>
</tr>
</tbody>
</table>
Data Selection
Facilitating iEMR data access

Quiet EMR Data Extraction Wizard: Status underway
EMR Data Extraction Wizard: Overview

1. SELECT COHORT
 - Search existing
 - Using structured or unstructured data
 - Based on other cohorts

2. SELECT VARIABLES (ELEMENTS)
 - Select from domains, e.g. Immunisation, allergies, Orders
 - Can identify variables from screen shots

3. DEFINE VARIABLE TRANSFORMATION
 - Aggregation
 - Data imputation
 - Normalisation
 - Computations

4. EXTRACT DATA

5. USE DATA: DASHBOARD, REPORT, RESEARCH (AI/ML/STAT MODELS)

Performed on QUIET

QH data tools
Benefits of Data Selection layer

Enable non-IT experts to identify the data they want and the extraction method needed

Re-usable cohorts, data sets

Identify cohorts (phenotypes) using both *structured and unstructured data* (e.g. clinical notes)

Enable *OMOP Integration*
Next steps and beyond

Research

Building research capability
Using QUIET to create and link OMOP extraction with Data models and Dictionary

source: https://www.d4l.io/blog/leverage-OHDSI-OMOP-common-data-model-for-medical-research/
Integrate the research element back into QUIET to:

- Create re-usable building blocks (task-oriented clinical DL/ML models) to enable clinicians and other researchers to test new hypotheses

- Monitor model performance with live data

- Re-integrate selected models for deployment within QH data products (dashboards) and clinical workflows (e.g. FHIR)

source: https://www.d4l.io/blog/leverage-OHDSI-OMOP-common-data-model-for-medical-research/
Questions?