Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND)

Associate Professor Nicole Pratt
Quality Use of Medicines and Pharmacy Research Centre
University of South Australia

www.ohdsi.org
Large-scale Data Analytics
Goal: To generate real world evidence on the effects of medical interventions using observational healthcare data to support clinical decision making

How: Developing a comprehensive framework for doing observational health-care science at scale
The trouble with observational research....

Maybe the data is a bit dirty!

Maybe just tweak the analysis a little bit!

An Answer!

Another Answer!

Another Answer!

P-hacking!

Publication bias

If at first you don’t succeed, try 3 more times so that your failure is statistically significant.
P-hacking and publication bias!

Schuemie M. et al. Improving reproducibility by using high-throughput observational studies with empirical calibration. Phil Trans Royal Society 2018
Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis

Marc A Suchard, Martijn J Schuemie, Harlan M Krumholz, Seng Chan You, Ruijun Chen, Nicole Pratt, Christian G Reich, Jon Duke, David Madigan, George Hripcsak, Patrick B Ryan

www.thelancet.com Published online October 24, 2019 https://doi.org/10.1016/S0140-6736(19)32317-7
LEGEND in action...

Head-to-head HTN drug comparisons

- Trials: 40
- $N = 102 - [1148] - 33K$
LEGEND in action...

LEGEND knowledge base for hypertension

Head-to-head HTN drug comparisons

- Trials: 40
- N = 102 – [1148] – 33K
- Comparisons: 10,278
- N = 3502 – [212K] – 1.9M

55 outcomes of interest

- Abdominal pain
- Abnormal weight gain
- Abnormal weight loss
- Acute myocardial infarction
- Acute pancreatitis
- Acute renal failure
- All-cause mortality
- Anaphylactoid reaction
- Anemia
- Angioedema
- Anxiety
- Bradycardia
- Cardiac arrhythmia
- Cardiovascular disease
- Cardiovascular-related mortality
- Chest pain or angina
- Chronic kidney disease
- Coronary heart disease
- Cough
- Decreased libido
- Dementia
- Depression
- Diarrhea
- Edema
- End stage renal disease
- Fall
- Gastrointestinal bleeding
- Gout
- Headache
- Heart failure
- Hemorrhagic stroke
- Hepatic failure
- Hospitalization with heart failure
- Hospitalization with preinfection syndrome
- Hyperkalemia
- Hypokalemia
- Hypomagnesemia
- Hypotenension
- Impotence
- Ischemic stroke
- Kidney disease
- Malignant neoplasm
- Measured renal dysfunction
- Nausea
- Neutropenia or agranulocytosis
- Rash
- Rhabdomyolysis
- Stroke
- Sudden cardiac death
- Syncope
- Thrombocytopenia
- Transient ischemic attack
- Type 2 diabetes mellitus
- Vasculitis
- Venous thromboembolic events
- Vertigo
- Vomiting

22,000 calibrated, propensity score adjusted hazard ratios
A picture is worth a 1000 ANALYSES.....
Published observational study results

59,196 estimates
19.0% of CIs include 1

Suspicious cutoff at p=0.05
- Publication bias (leads to false positives)
- P-hacking (leads to false positives)

LEGEND results

1,321,696 estimates
83.4% of CIs includes 1
Enhancing the dissemination of results (the results have their own data model!)
Study specification

<table>
<thead>
<tr>
<th>Indication</th>
<th>- indication_id</th>
<th>- Indication_name</th>
<th>- definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyses</td>
<td>- analysis_id</td>
<td>- description</td>
<td>- definition</td>
</tr>
<tr>
<td>Incidence</td>
<td>- incidence_analysis_id</td>
<td>- incidence_analysis_name</td>
<td></td>
</tr>
<tr>
<td>Exposures</td>
<td>- exposure_id</td>
<td>- exposure_name</td>
<td>- description</td>
</tr>
<tr>
<td>Exposure Group</td>
<td>- exposure_id</td>
<td>- exposure_name</td>
<td>- description</td>
</tr>
<tr>
<td>Attrition</td>
<td>- database_id</td>
<td>- exposure_id</td>
<td>- description</td>
</tr>
<tr>
<td>Comparison Summary</td>
<td>- database_id</td>
<td>- target_id</td>
<td>- comparator_id</td>
</tr>
<tr>
<td>Covariate</td>
<td>- database_id</td>
<td>- exposure_id</td>
<td>- description</td>
</tr>
</tbody>
</table>

Generated results

<table>
<thead>
<tr>
<th>Cohort_method_result</th>
<th>- database_id</th>
<th>- target_id</th>
<th>- comparator_id</th>
<th>- outcome_id</th>
<th>- analysis_id</th>
<th>- rr</th>
<th>- ci_95_lb</th>
<th>- ci_95_ub</th>
<th>- p</th>
<th>- log_rr</th>
<th>- se_log_rr</th>
<th>- target_subjects*</th>
<th>- comparator_subjects*</th>
<th>- target_days</th>
<th>- comparator_days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>- database_id</td>
<td>- exposure_id</td>
<td>- outcome_id</td>
<td>- analysis_id</td>
<td>- incidence_analysis_id</td>
<td>- subjects*</td>
<td>- days</td>
<td>- outcomes*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Metadata

- Database
 - database_id
 - database_name
 - description
 - is_meta_analysis

- Exposures
 - single_exposure_of_interest
 - exposure_id
 - exposure_name
 - description
 - indication_id
 - definition
 - combi_exposure_of_interest
 - exposure_id
 - exposure_name
 - description
 - single_exposure_id_1
 - single_exposure_id_2
 - indication_id

- Attrition
 - database_id
 - exposure_id
 - target_id
 - comparator_id
 - min_date
 - max_date

- Covariate
 - database_id
 - exposure_id
 - target_id
 - comparator_id
 - outcome_id
 - analysis_id

<table>
<thead>
<tr>
<th>Database</th>
<th>- database_id</th>
<th>- target_id</th>
<th>- comparator_id</th>
<th>- outcome_id</th>
<th>- analysis_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence_analysis</td>
<td>- database_id</td>
<td>- target_id</td>
<td>- comparator_id</td>
<td>- outcome_id</td>
<td>- analysis_id</td>
</tr>
</tbody>
</table>

Diagnostics

- Kaplan_meyer_dist
 - database_id
 - target_id
 - comparator_id
 - preference_score
 - target_density
 - comparator_density

- Propensity_model
 - database_id
 - target_id
 - comparator_id
 - coefficients

* indicates fields with a minimum value to avoid identifiability

<table>
<thead>
<tr>
<th>Metadata</th>
<th>- database_id</th>
<th>- target_id</th>
<th>- comparator_id</th>
<th>- outcome_id</th>
<th>- analysis_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence_analysis</td>
<td>- database_id</td>
<td>- target_id</td>
<td>- comparator_id</td>
<td>- outcome_id</td>
<td>- analysis_id</td>
</tr>
</tbody>
</table>

[] indicates nullable

underscore indicates primary key
https://data.ohdsi.org/LegendBasicViewer/
<table>
<thead>
<tr>
<th>Analysis</th>
<th>Data source</th>
<th>HR</th>
<th>LB</th>
<th>UB</th>
<th>P</th>
<th>Cal.HR</th>
<th>Cal.LB</th>
<th>Cal.UB</th>
<th>Cal.P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS stratification, on-treatment</td>
<td>CAE</td>
<td>1.11</td>
<td>0.85</td>
<td>1.48</td>
<td>0.45</td>
<td>1.13</td>
<td>0.64</td>
<td>1.59</td>
<td>0.40</td>
</tr>
<tr>
<td>PS stratification, on-treatment</td>
<td>CIVIC</td>
<td>0.69</td>
<td>0.48</td>
<td>1.29</td>
<td>0.72</td>
<td>0.72</td>
<td>0.36</td>
<td>1.27</td>
<td>0.64</td>
</tr>
<tr>
<td>PS stratification, on-treatment</td>
<td>INSO</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PS stratification, on-treatment</td>
<td>MOCD</td>
<td>0.93</td>
<td>0.61</td>
<td>1.64</td>
<td>0.92</td>
<td>0.96</td>
<td>0.59</td>
<td>1.58</td>
<td>0.88</td>
</tr>
<tr>
<td>PS stratification, on-treatment</td>
<td>MOOR</td>
<td>1.34</td>
<td>1.00</td>
<td>1.83</td>
<td>0.90</td>
<td>1.42</td>
<td>1.00</td>
<td>2.12</td>
<td>0.04</td>
</tr>
<tr>
<td>PS stratification, on-treatment</td>
<td>MDSO</td>
<td>1.24</td>
<td>1.09</td>
<td>1.46</td>
<td>0.83</td>
<td>1.24</td>
<td>1.00</td>
<td>1.53</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table: The table displays the effect sizes of different treatments compared to placebo, with 95% confidence intervals (CI) and p-values. The outcomes are presented for patients treated with ACE inhibitors, comparing the effect of different treatments on the primary outcome.
Figure 2. Preference score distribution. The preference score is a transformation of the propensity score that adjusts for differences in the scores of the two treatment groups. A higher overlap indicates subjects in the two groups were more similar in terms of their predicted probability of receiving one treatment over the other.