

Evaluating Use of Methods for Adverse Event Under Surveillance (EUMAEUS)

Why EUMAEUS?

1) The rapid rollout of COVID-19 vaccines makes it increasingly critical to perform large-scale evaluations of vaccine safety using real-world evidence.

2) Estimate the comparative performance (bias, precision, timeliness) of the case-control, cohort, historical rate, and self-controlled methods for vaccine safety.

Literature Review

Lana Lai
on behalf of the EUMAEUS task force

Types of Study Designs

Study Design	Description	Advantages	Disadvantages	Clinical Applications
Case-control	 Comparison of cases vs. non-cases from the same source population from the same time-period 	 Uses small data sample from entire cohort, cost efficient Use matching to control for time-varying confounders 	 Confounding by indication Selection bias Misclassification of exposure 	 Autism spectrum disorders & various vaccines Inflammatory bowel disease (IBD) & MMR vaccine Guillain-Barré syndrome (GBS) & H1N1 vaccine

Types of Study Designs

Study Design	Description	Advantages	Disadvantages	Clinical Applications
Cohort	 Comparison of incidence rate ratio of adverse events between vaccinated vs. unvaccinated population 	 Easy to implement – large amount of data available Use matching / stratification to control for potential confounders 	 Confounding by indication Misclassification of exposure 	 Intussusception & rotavirus vaccine Autism spectrum disorders & various vaccines
Historical Rate (Comparator) Cohort	 Comparison between observed incidence of adverse events vs. expected incidence based on historical data 	 Greater statistical power to detect rare adverse events Improved timeliness in detecting potential safety signals 	Temporal confounders (e.g. seasonality, changing trends in detection of adverse events & variation in diagnostic criteria over time)	 Pediatric vaccines Tdap vaccine HPV vaccine H1N1 vaccine

Types of Study Designs

Study Design	Description	Advantages	Disadvantages	Clinical Applications
Self- Controlled Case Series (SCCS) / Self- Controlled Risk Interval (SCRI)	 Comparison between incidence rates in exposed time periods vs. incidence rates of self-matched unexposed time periods SCCS: Cases only SCRI: Vaccinated population only 	 Adjust for time-invariant confounders SCCS: Multiple occurrences of independent events within an individual can be assessed SCRI: Less susceptible to misclassification of exposure 	 Time-varying confounding (e.g. age, seasonality) Reverse causality bias 	 Guillain- Barré syndrome (GBS) & H1N1 vaccine Autism spectrum disorders & various vaccines Seizures & various vaccines

Overview of the EUMAEUS Experiment Design

Marc Suchard

on behalf of the EUMAEUS task force

EUMAUES is an empirical benchmark study

Builds on our prior work evaluation of comparative (drug) effectiveness and safety methods published in *Harvard Data Science Review*

To systematically evaluate the

performance of methods

to reliably

identify vaccine safety signals

in

real-world settings

Harvard Data Science Review • 2.1

How Confident Are We
About Observational
Findings in Health Care: A

Benchmark Study

Martijn J. Schuemie, M. Soledad Cepede, Marc A. Suchard, Jianxiao Yang,
Yuxi Tian Alejandro Schuler, Patrick B. Ryan, David Madigan¹,
George Hripcsak

¹Professor of Statistics, Columbia University

Published on: Jan 31, 2020
DOI: 10.1162/99608f92.147cc28e

Vaccine safety surveillance methods

Reduce systematically to **four** components:

• Construction of a *counterfactual* ("expected count" without vaccination)

• A time-at-risk when safety events can occur

• The *test-statistic* to estimate, and

• A decision rule to classify signals from non-signals

Counterfactual construction

- Case-control
 - How often are patients with events vaccinated?
- Contemporary non-user comparator cohort method
 - How often do events occur to similar unvaccinated patients?
 - Some variants: anchoring (or not) on healthcare visit; matching (or not) on age + sex
- Historical rates
 - How often did events occur to other patients in the past?
 - Some variants: anchoring; stratifying (or not) on age + sex
- Self-control case series
 - How often did/do events occur in the same patients at different times?

Note: 17 total variations drawn from the literature

Time at risk and test-statistics

- A *time-at-risk* when safety events can occur:
 - 0-1 days, 1-28 days and 1-42 days after vaccination
 - Dose definition (first, second, both)
- The *test-statistic* to estimate:
 - Effect-size estimation (incidence rate ratio, hazard ratio or odds ratio)
 - Log-likelihood ratio (common in vaccine surveillance, allows for corrections for multiple testing over time via *MaxSPRT*)
 - With and without empirical calibration (to control for systematic error)

Method performance metrics

- A decision rule to classify signals from non-signals
 - Bias / variance (particularly of the *residual systematic error*)
 - Type 1 error rate
 - Type 2 error rate
 - Timeliness to achieve power

Real-world evidence with 117M estimates

Exposures of interest:

- H1N1pdm (`09-`10)
- Seasonal influenza (Fluvirin, `17-`18)
- Seasonal influenza (Fluzone, `17-`18)
- Seasonal influenza (all, `17-`18)
- Zoster (2018, 2 doses)
- HPV (2018, 2 doses)

Data sources:

- CCAE
- MDCR
- MDCD
- Optum EHR

Negative control outcomes (93):

- Not related to any of these vaccines
- Similar prevalence and %-inpatient diagnoses (severity) to AESI
- Clinical expert review

Positive control outcomes:

- Imputed from negative controls
- Known effect sizes (1.5, 2, 4 x)

Open Science: pre-specified and registered protocol, open-source analytic code, public access to all results

- https://ohdsi-studies.github.io/Eumaeus/Protocol.html
- https://github.com/ohdsi-studies/Eumaeus/
- https://data.ohdsi.org/Eumaeus/

Prelude to the results

- Which methods are *least bias* in the real-world?
 - Effect of counterfactual anchoring
 - Effect of confounding adjustment
- What is the *trade-off* to achieve, say, 50% power?
- Should we *combine multiple designs* (signal generation / evaluation) to improve performance?
- Is **sequential testing** (α -spending) correction a panacea?
- Do **2**nd **doses** influence method choice?

Bias, precision and timeliness of historical rate comparison methods

Xintong Li

on behalf of the EUMAEUS task force

Recall the advantages of historical comparator design:

- Greater statistical power
- Improved timeliness

Especially useful at early stage after vaccine introduction

Historical comparator is from:

- literature
- within same database / population (best-case scenario)
- others

Choice of design

Population	Time-at-risk	Calibration
Unadjusted	Entire year	Yes
Adjusted for age and sex	Relative to outpatient visit	No

Historical comparison in general: Sensitive but not specific

Sensitive but not specific

Unadjusted, entire historical period

Age and sex adjusted, entire historical period

Adjust for age and sex reduced type 1 error.

Sensitive but not specific

After adjusting for age and sex, anchoring on visit further reduce type 1 error.

Unadjusted, entire historical period

Age and sex adjusted, entire historical period

Age and sex adjusted,
Time-at-risk after
historic visit

CCAE Empirical calibration H1N1 0.5 "forcing" type 1 to close to nominal, at the cost of increasing 0.7 HPV-0.1 type 2 error Seasonal flu -0.6 Zoster-0.7 0.4 0.1 0.1 1 0.5 1 0.5 0 0.5 1

Empirical calibration

Age and sex adjusted,
Time-at-risk after
historic visit

Age and sex adjusted,
Time-at-risk after
historic visit

Empirical calibration: reduce type 1, increase type 2

Higher and faster uptake, earlier detection

Database CCAE

Analysis Adjusted for

Adjusted for age and sex, no anchoring

Calibration

No

Conclusion

- Sensitive but not specific: overestimate risks
- Age-sex adjustment reduce false positive
- Anchoring on visit reduce false positive
- Empirical calibration: forced type 1 error back to normal, at the cost of increasing type 2 error.
- For vaccine with high uptake speed: can detect earlier, stabilized estimation.

Combining Methods in a Safety Surveillance System

Faaizah Arshad

on behalf of the EUMAEUS task force

Introduction

Sensitive method Specific method High sensitivity & specificity

- HIV testing
 - Two part test: 1) highly sensitive (few false negatives); 2) highly specific
 (eliminate false positives)

Methods

 We hypothesized that sequentially combining methods might be desirable for population-level COVID-19 vaccine safety surveillance.

- Method 1: historical comparator (sensitive / cheap)
- Method 2: self-controlled case series (specific)
- Combined: Method 1 → Method 2

Uncalibrated type I and II errors for all outcomes

Calibrated type I and II errors for all outcomes

Calibration tries to fix the type I error rate (closer to nominal); most noticeable for historical comparator.

HistoricalComparator SCCS Combined

After calibration, historical comparator still most sensitive. Reduced type I error for historical comparator and SCCS.

Database: IBM MDCR

Outcome: All

Time-at-Risk: 1-28 days

Calibrated Type 1 Calibrated Type 2

Conclusion

Reject hypothesis.

 Sequentially combining sensitive and specific methods does not improve performance over using a single method.

• Future vaccine monitoring should consider the sequence of methods used to ensure accurate signal detection.

Estimation for Two-Dose Vaccines

Ty Stanford

on behalf of the EUMAEUS task force

Aim:

 Does the inclusion of data from the 2nd dose, among vaccines with 2 doses, reduce type II error?

Data:

This limits EUMAEUS data to

(CCAE, Optum EHR) x (HPV vaccine, Zoster vaccine) combinations

Dose accumulation

Database	Dose	HPV vaccination (Gardasil 9)	Zoster vaccination (Shingrix)
Optum EHR	First	233985	219665
	Second	28336	63464

To calibrate or not to calibrate?

Adding 2nd dose: Cohort Design

Dose

MaxSPRT

(1st only) vs (1st & 2nd)

Adding 2nd dose: SCCS

(1st only) vs (1st & 2nd)

Type I error (TE = 1)

→ Type II error (TE = 1.5) Type II error (TE = 2)

Type II error (TE = 4)

Conclusion

- Inclusion of the 2nd dose can increase the power
 - marginally in this case, likely as a result of a marginal increase in sample size
- The most important factor is *empirical calibration*
 - more data doesn't magically negate issues with specific designs
- Future work to understand the issues better:
 - Larger proportion of 1st doses to also have 2nd doses (with differing rates)
 - Underlying signals (positive controls) to have varying effects after each dose

Comparison of performance across methods

Martijn Schuemie

on behalf of the EUMAEUS task force

Same data & question, different methods: different results

Outcome

Contusion of toe

Database

Optum EHR

Comparing on type 1 and type 2 error

40

Database

Optum EHR

Empirical calibration: restoring type 1

Database
Optum EHR

comparable.

SCCS has lowest type 2 error

Adjusting for systematic error and sequential testing

Type 1 error

	Historical	
	comparator	SCCS
Uncalibrated, no adjustment for sequential testing	28.0%	4.3%
Uncalibrated, MaxSPRT	18.3%	2.2%
Calibrated, no adjustment for sequential testing	10.8%	5.4%
Calibrated, MaxSPRT	6.5%	4.3%
ure		

Exposure

H1N1pdm vaccinations

Outcome

All negative controls

Database

Optum EHR

Adjusting for **systematic error**has bigger impact than
adjusting for **sequential testing**

Optum EHR

Time to 50% sensitivity (after calibration)

43

More or less consistent across methods / outcomes /databases

Adj. for sequential testing MaxSPRT

Adj. for systematic error Empirical calibration

Database

Optum EHR

True effect size = 1.5 True effect size = 2 True effect size = 4

Conclusions

- Many methods show large systematic error / type 1 error
- Empirical calibration can restore type 1 error to nominal, at the cost of increasing type 2 error
 (depending on magnitude of systematic error)
- Empirical calibration often has bigger impact than adjusting for sequential testing (should do both)
- After calibration and adj. for sequential testing SCCS seems overall best (shortest time to detection)
- No method achieves high sensitivity for small true effect sizes (on these data)

Recommendations for a safety surveillance system

Martijn Schuemie

on behalf of the EUMAEUS task force

Recommendations

- Many methods (e.g. case-control & historical comparator) have positive bias, causing many false positives (high type 1 error)
 - Include negative controls and use empirical calibration
 - Include self-controlled designs
 - Always use confounding adjustment
 - Carefully consider anchoring of counterfactual
- Detecting more than half of true adverse effects may require accepting more false positives (e.g. using calibrated p < 0.10)
- Combining multiple designs likely doesn't improve performance
 - Do not distinguish between 'signal generation' and 'signal evaluation'
- Second dose often underpowered to contribute to evidence