Building Bridges with Julia
Using OHDSI R Packages in Julia

= PRESENTER: Jacob S. Zelko

INTRODUCTION:

The amount of healthcare data s
skyrocketing. Waiting on answers from this
data just one day, can mean thousands of
lives lost — as seen in the COVID pandemic.
Beyond the cost of human lives, the financial
costs of needed hardware for delivering
these crucial answers are rising. Between the
issues of financial costs and the urgency for
rapid insights, there is clear need in the
OHDSI community to encourage tooling that
can bridge this problem.

METHODS:

Demonstrated here is a possible solution,
using a dynamic and high performance
programming language, Julial, to
interoperate with R to utilize OHDSI
packages and perform basic procedures
easily to produce performance gains. For
this approach, | used the R package
JuliaConnectoR? to use Julia tools from
within R and the Julia package RCall® to call
R tools from within Julia. Two basic
exercises for benchmarking were done:

= Task 1: Read SynPUF* CSV

= Task 2: Query Eunomia®

RESULTS:

Reading in SynPUF data

Read SynPUF data using R

Task 1 Code: Reading SynPUF CSV

Figure A: Julia Figure B:R

Using Julia’'s CSV reader

using CSV

Reading raw SynPUF data
data <- read.csv(“synpuf.csv”)
data = CSV.File(“synpuf.csv”)

Figure C: R in Julia Figure D: Juliain R

Load the JuliaConnectoR package

Load RCall package Llibrary(“JuliaConnectoR”)

using RCall # Import Julia’'s CSV reader

jesv <= juliaImport(“CSV")

data = R"read.csv(\"synpuf.csv\")" 4 oo 4 in example SynPUF data

data <- jcsvs$File(“synpuf.csv”)

Task 1: Read SynPUF CSV

14000

E 12000

e 10000

2 8000

E 6000

é 4000

2000

'mm N
Julia Juliain R R Rin Julia
Types
Task 2: Query Eunomia
350
— 300
B 250
E 200
E 150
F so0
0
R in Julia R
Types

For Task 1, a =5x’s speedup is seen from
the Julia in R example over R’'s CSV reader.

For Task 2, only using R and R embedded
in Julia was considered. Leveraging Julia,
the R in Julia example is =2x’s fast as the R
implementation.

Task 2 Code: Query Eunomia
Figure A: Querying inR

Open connection to Eunomia

library('DatabaseConnector’)

connectionDetails <- Eunomia::getEunomiaConnectionDetails()
connection <- connect(connectionDetails)

Create SQL Query
sgl <=- "

SELECT *

FROM @cdm.person

Return people from SQL query
result <- renderTranslateQuerySql(connection, sql, cdm ="main")

Make R data frame
data.frame(t(sapply(result,c)))

Figure B: Querying in Julia Using R

Load RCall package
using RCall

Get patients from Eunomia PERSON table
pEDpl’E = Ru "

library('DatabaseConnector')
connectionDetails <- Eunomia::getEunomiaConnectionDetails()
connection <- connect(connectionDetails)

5q1. <= 1]
SELECT *
FROM @cdm.person

result <- renderTranslateQuerySql(connection, sql, cdm ="main")

Convert R 'list' to Julia DataFrame
people_data = rcopy(people)

Gulia in R (Fig 1D), .
can provide a

nearly 5x’s speedup
over the R CSV

Georgia Research
Tech [Institute

Problem. Solved.

SELECTED DISCUSSION TOPICS:
How were benchmarks made?

Table 1: Task Benchmarks
Task Type Time (ms)

Read SynPUF C5V Julia 2114
Read SynPUF CSV Juliain R 2960
Read SynPUF C5V R 13100
Read SynPUF CSV Rin Julia 12980

Query Eunomia Rin Julia 169

Query Eunomia R 317

| reader (Fig 1B). |

" Querying OHDSI’s |

Eunomia package in
Julia using R gives a
2x’s speedup over
the base R

| implementation ;

For more
information,
scan the QR
code here!

In Table 1, the minimum time from 10
evaluations of the code created for each task
was recorded. For the "Read SynPUF Cs5V”
task, 150 MBs of SynPUF data were read.
The benchmarking tools, BenchmarkTools.jl®
for Julia and bench’ for R was used to
generate times.

Why Julia instead of language X?

* Interoperability with other languages
* High performance computing

* Understandable syntax.

* Emerging resources for OHDSI tasks (e.g.
database interfaces, OMOP CDM, etc.).

What are future research directions?
Further directions for this research will be to
* Leverage existing OHDSI tools with Julia

* |dentify improvements with Julia via
language interoperability (i.e. R & Julia)

* Develop tooling for actual study to test
how feasible it is to leverage Julia in an
OHDSI network study design.

ACKNOWLEDGEMENTS

Thank you so much to the following people
for their support in this endeavor!

* Charity Hilton and Jon Duke (Georgia
Tech Research Institute).

* Dilum Aluthge and Clark C. Evans
(JuliaHealth)

* Kristin Kostka (OHDSI Community).

REFERENCES:

1. Bezanson, leff, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017
“Julia: & Fresh Approach to Numerical Compauting.” S48 review 59{1):
B5=G8.

2. Lenz, Stefan, Maren Hackenberg, and Harald Binder. 2021, “The
JuliaConnectoR: A Functionally Orlented Interface for Integrating Julla in
R." arXiv:2005.06334 [os, stat]. hitoaooy orpfabs 2000 06334 (August
13, 2021).

3. RCall. N, 2021. Julia Interap. Julia.
bitpseithub comulialnterop/REaILE (August 13, 2021).

4. "Medicare Claims Synthetic Public Use Files (SynPUFs) | ChS.”
hibtos.fenw cms gov/Recparth-Statictice Data-and-

- -Lisa-Fi (August 13, 2021).

5 Ewnomii. 2021. Observational Health Data Sciences and Informatics. R.

bitpe eithub com OHDS Eunomia (August 13, 2021). Environments.”

arXiv e-prints.

B. Chen, lizhao, and Jarmatt Revels. 2016.
"Robust Banchmarking in Molsy

1 High Precision Timing of R Expressions =

Bench.” hitps//bench.r-lib.org’ [August 13,
2021).

OHDSI

