Diagnostic Accuracy of Code-Based Algorithms to Identify Urinary Tract Infection in U.S. Administrative Claims Databases

Stephen P. Fortin1, Jeroen Geurtsen2, Michal Sarnecki3, Joachim Doua1, Jamie Colasurdo1, Joel Swerdlow1
1Janssen R&D, LLC, USA; 2Janssen Vaccines & Prevention, 3 Netherlands; Janssen Vaccines, EU

Background
- Urinary tract infections (UTI) are one of the most common infections in the United States and worldwide
- Nearly half of women experience a UTI during their lifetime
- Limited research exists assessed the diagnostic accuracy of code-based algorithms to identify UTI, and prior research is limited to studies performed at a single center or among pediatric patients, which may lack generalizability

Study Objectives: To evaluate the performance characteristics of 10 code-based algorithms to identify UTI among adult patients contained in 3 large U.S. administrative claims databases

Methods

Study Design: Descriptive study
Data Source: Data were from 3 large U.S. administrative claims databases:
- IBM® MarketScan® Multi-State Medicaid Database (MDCD)
- IBM® MarketScan® Medicare Supplemental and Coordination of Benefits Database (MDCR)
- IBM® MarketScan® Commercial Claims and Encounters Database (CCAPE)

Study Population: We identified all patients observed on between January 1, 2010 to December 31, 2019 (MDCD) and January 1, 2010 to October 31, 2020 (MDCR and CCAPE). Analyses were restricted to patients aged ≥18 years in MDCD and CCAPE, and ≥66 years in MDCR.

Code-Based Algorithms: A total of 10 code-based algorithms (listed below) were developed based on a systematic literature review and clinical subject matter expert input.

Abbreviation Description
DX UTI Dx
PDX Primary UTI Dx
2DX UTI Dx with ≥2 additional UTI Dx in 7 days
DX+A UTI Dx with antibiotic for UTI in 7 days
DX+UA UTI Dx with UA/UCx in 3 days
3DX UTI Dx with ≥3 additional UTI Dx in 7 days
3DX+ A UTI Dx with ≥3 additional UTI Dx & antibiotic for UTI in 7 days
3DX+UA UTI Dx with ≥3 additional UTI Dx in 7 days & UA/UCx in 3 days
3DX+UA UTI Dx with ≥3 additional UTI Dx in 7 days & UA/UCx in 3 days

Diagnosis: UTI Dx; UA: urinalysis; UCx: urine culture

Statistical Analysis
- The PhEvaluato tool was used to develop diagnostic predictive models and probabilistic gold standards for UTI
- The probabilistic gold standards were used to evaluate the performance characteristics of code-based algorithms

Results

Table 1. Number of patients meeting the study criteria, covariates included in the probabilistic gold standard, and estimated prevalence of UTI in each database

<table>
<thead>
<tr>
<th>Database</th>
<th>Number patients meeting study criteria (N)</th>
<th>Number covariates included in probabilistic gold standard</th>
<th>Estimated prevalence of UTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDCC</td>
<td>2,950,641</td>
<td>14,230</td>
<td>41.6%</td>
</tr>
<tr>
<td>MDCR</td>
<td>1,831,405</td>
<td>11,613</td>
<td>48.6%</td>
</tr>
<tr>
<td>CCAPE</td>
<td>2,294,929</td>
<td>15,274</td>
<td>21.6%</td>
</tr>
</tbody>
</table>

As shown in Figures 1-3, overall trends in performance characteristics were similar across data sources, and algorithms could be classified into one of two categories:
- High sensitivity algorithms
- High PPV algorithms

High sensitivity algorithms:
- DX: Sensitivity and PPV greater than 81.9% and 65.8%, respectively, translating to high F1 scores (>73.0%)
- DX+A, DX+UA: Improvements in PPV (>74.2%) alongside a small reduction in sensitivity (>72.1%) as compared to DX

High PPV algorithms:
- PDX: highest PPV (>93.1%) and lowest sensitivity (<12.9%) translating to a low F1 score (<22.7%)
- 3DX, DX+UA: high PPV (>89.9%) and improved, albeit low, sensitivity (<41.6%)

In MDCR, algorithms requiring UA/UCx had decreased performance as compared to other algorithms

Conclusions
- Inherent tradeoff insensitivity and PPV across algorithms
- Recommend algorithms requiring single UTI diagnosis code in studies where sensitivity is critical (e.g., safety studies)
- Recommend algorithms requiring 3 UTI diagnosis codes over algorithms requiring primary UTI diagnosis code in studies where high PPV is important (e.g., comparative effectiveness studies)
- Algorithms requiring primary UTI diagnosis code suffer from poor sensitivity
- Additional requirement for antibiotics used in the treatment of UTI or the presence of a urinalysis/urine culture associated with a small increase in PPV and decrease in sensitivity, but performance may be dependent on data source characteristics

Contact: sfortin1@its.jnj.com