Predicting 1-3-, and 5-year mortality after surgery for colorectal cancer using a Danish quality assurance database

Andreas Weinberger Rosen, Karoline Bendix Bräuner, Mikail Gögenur, Viviane Annabelle Lin, Johan Stub Rønø Clausen, Eldar Allakhverdiiev, Adamantia Tsouchnika, Rasmus Peuliche Vogelsang, Ismail Gögenur

Background

Colorectal cancer (CRC) is the 3rd most common malignant disease and the second most deadly globally, with more than 1.900.000 new cases estimated in 2020 and 935.000 deaths (1). Surgery is the cornerstone of treatment for patients with curable CRC. Additionally, some patients benefit from pre- or postoperative oncological interventions. In the past decades, short-term survival has improved for patients operated for colorectal cancer in Denmark, partly due to standardization and centralization of treatment (2). However, it is becoming apparent that some subgroups need personalization of the treatment to reduce over- or under treatment. Ensuring patients undergoing surgery for CRC get optimal treatment is as important as for all other patients. Still, the combination of treatment options puts patients at risk for several complications and conditions, which can result in morbidity or mortality and reduced quality of life or an escalation of treatments. Due to patients’ preferences are heterogeneous and the relationships between interventions and important outcomes are complex, a single measurement defining an optimal treatment does not exist. Potentially looking at several outcomes that can describe morbidity, mortality, and quality of life can be used to guide treatment decisions and ensure treatment options are optimized to patients’ preferences. This study aims to create a prediction model for long-survival (defined here as 1-, 3-, and 5-years after surgery) for patients operated for colorectal cancer based upon data from a national Danish quality assurance database. The ultimate goal of creating these models is using them together with other models for key outcomes to give clinicians a comprehensive overview of patients’ risk profile before surgery for colorectal cancer, thus supporting them in providing treatment recommendations.

Methods

Data from the Danish Colorectal Cancer Group’s database, a national quality assurance database started in 2001 which covers >99% of patients diagnosed with colorectal cancer in Denmark and their subsequent treatment were converted to the Observational Medical Outcomes Partnership (OMOP) common data model (CDM) (3). The study was designed in ATLAS (4) using all patients with a diagnosis of CRC between 2001-2019 that underwent surgery as the target cohort. Death from any cause was considered as the outcome event. Date of surgery was used as the index date and time-at-risk for 1-, 3- and 5-years were defined as 365, 1095, and 1825 days after surgery. Patients without an event and not completing the time-at-risk were excluded from the analysis. Covariates known before surgery or which were considered to be planned were included as potential covariates in the model. A team of medical doctors curated the list to exclude any covariates not considered medically relevant. A LASSO logistic regression model was trained using the Patient-Level-Prediction package (5). The dataset was split into a 75% training set and a 25% test set. The training was done with 3-fold cross-validation. The model was evaluated using the area under the receiver operating characteristic (AUROC), the area under the precision-recall curve (AUPRC), and calibration.

Results
76,828 patients were considered in the entire database. The number of eligible patients for each prediction model is summarized together with the number of outcomes, incidence AUROC and AUPRC in table 1.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of patients at risk</th>
<th>Number of patients with outcome</th>
<th>Incidence (%)</th>
<th>AUROC (95% CI)</th>
<th>AUPRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year mortality</td>
<td>63485</td>
<td>10724</td>
<td>16.89</td>
<td>0.866 (0.858-0.873)</td>
<td>0.624</td>
</tr>
<tr>
<td>3 years mortality</td>
<td>57062</td>
<td>19391</td>
<td>33.98</td>
<td>0.833 (0.826-0.84)</td>
<td>0.765</td>
</tr>
<tr>
<td>5 years mortality</td>
<td>50752</td>
<td>24385</td>
<td>48.05</td>
<td>0.842 (0.835-0.849)</td>
<td>0.856</td>
</tr>
</tbody>
</table>

Table 1. Summarizes the size of the cohort, number of outcomes and model performance for the different time-at-risks. AUROC: Area under the receiver operating characteristic, CI: Confidence interval, AUPRC: Area under the precision-recall curve.

The models were generally well-calibrated, with figure 1 using the model with a 5-years time at risk as an example.

![Calibration plot](image)

Figure 1. Shows the calibration plot for the LASSO regression with 5-years time-at-risk for the test set.

**Conclusion**

We showed that it is possible to create a reasonable prediction model for long-term postoperative mortality for patients undergoing surgery for colorectal cancer with decent discrimination and calibration, using data from a Danish quality assurance database. The database offers highly granular information about patients around the time of operation but limited information about medical history and virtually no information about physiological measurements or exposure to drugs. However, data sources that describe these domains exist (6–8) and due to the unique civil registration number for each participant in
the Danish Civil System, possible to merge these sources easily. Representing new areas of patients’ health status has the possibility to improve the model performance, but the output of risk of death needs to be interpreted holistically, taking other important factors into accounts, such as complications or recurrence, along with patients’ preferences. In the future, it could be imagined that a suite of prediction models could be used to support clinical decisions. In the present study, we investigated the case of using variables known before surgery, but additional prediction models at different points in the patient trajectory could help facilitate the contentious evaluation of the optimal strategy, e.g., highlighted in a recent study (9). In conclusion, using observational Danish healthcare data with the OMOP CDM and OHDSI tools are a promising framework for generating applicable clinical prediction models.

References/Citations


