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Background 

The challenge of building appropriate reference sets for performance evaluation of signal detection 
algorithms (SDAs) in pharmacovigilance has been widely acknowledged.1–3 Previous studies have 
attempted to comparatively assess the performance of SDAs by generating custom-made reference sets, 
often limited in size, by applying specific inclusion and exclusion design criteria. Examples include those 
related to adverse event (AE) background prevalence, disease-related AEs, AE seriousness or evidence 
associated with positive controls.4–7 This happens partially in an effort to address the limitations of 
disproportionality analysis, but also because observational data (e.g. postmarketing surveillance 
databases) suffer from confounding effects, in both directions, as a result of some variables remaining 
unobserved.8 The presence of any synthetic associations (i.e. causative covariates that have been not 
taken into account and generates faulty associations between the drug and the AE), such as underlying 
conditions or concomitant medications, might be a source of selection bias and complicate the detection 
of safety signals.9,10 Each SDA, depending on the applied modelling, might be impacted to a different 
extent by a confounder. Hence, the performance evaluation might be biased based on the selected 
benchmarks. We therefore need to consider the selection of appropriate controls to avoid 
misinterpretation of signals triggered by confounding factors rather than true associations as well as 
added biases to our evaluation by “favouring” some algorithms while penalising others. 

Only limited efforts exist in the literature to generate reference sets related to two-way drug-drug 
interactions (DDIs).11 A previous study has suggested that detection of DDI-related signals might suffer 
from multiple confounders.12 Thus, we were interested in exploring the relative impact on the 
performance evaluation of three existing SDAs for DDI postmarketing surveillance when considering 
design criteria that could be applied to create reference sets in this setting. 

Methods 

Three SDAs previously described in the literature were considered: Omega, delta_add and Interaction 
Signal Score (IntSS).13–15 A reference set of 4,455 positive and 4,544 negative controls for two-way DDIs 
was created by extracting and aggregating information from multiple clinical resources, namely the British 
National Formulary (BNF), the National Reference Guidance for healthcare professionals on DDIs 
(Thesaurus des Interactions Médicamenteuses) published by the French Medicines Agency (ANSM), and 
Micromedex. This reference set was the primary source of controls, covering 454 drugs and 179 adverse 
events mapped to OHDSI concepts (RxNorm and MedDRA vocabularies, respectively). A curated version 
of the FDA Adverse Event Reporting System (FAERS) database was used to generate evidence.16 

We selected 13 design criteria that could be categorised as follows: 

(1) Evidence level (only applied to positive controls) 

a. BNF – Study (for interactions where the information is based on formal study including 

those for other drugs with same mechanism, e.g. known inducers, inhibitors, or 

substrates of cytochrome P450 isoenzymes or P-glycoprotein) 



 

 

b. BNF – Theoretical (interactions that are predicted based on sound theoretical 

considerations. The information may have been derived from in vitro studies or based on 

the way other members in the same class act) 

c. BNF – Anecdotal (interactions based on either a single case report or a limited number of 

case reports) 

d. Micromedex – Established (controlled studies have clearly established the existence of 

the interaction) 

e. Micromedex – Theoretical (available documentation is poor, but pharmacologic 

considerations lead clinicians to suspect the interaction exists; or documentation is good 

for a pharmacologically similar drug) 

f. Micromedex – Probable (documentation strongly suggests the interactions exists, but 

well-controlled studies are lacking) 

(2) Event seriousness 

a. EMA Important Medical Event (IME) Terms 

b. EMA Designated Medical Event (DME) Terms 

(3) Event frequency 

a. Common AEs (i.e. AE prevalence ≥ 90th percentile of prevalence of events reported in 

FAERS) 

b. Rare AEs (i.e. AE prevalence ≤ 10th percentile of prevalence of events reported in FAERS) 

(4) Potential confounding by indication (i.e. the AE is also an indication for at least one of the two 

drugs from the drug-drug-event triplet under consideration) 

(5) Potential confounding by concomitant medication 

a. Shared indications – False (i.e. drug pairs that share at least one indication are excluded) 

b. Shared indications – True (i.e. only drug pairs that share at least one indication are 

considered)  

The positive and negative controls were stratified based on each of the above design criteria, forming 
suitable restricted subsets of different sizes in each case, depending on the criterion under consideration. 

We simulated the generation of reference sets of multiple sizes ranging from 100 to 𝑁𝑚𝑎𝑥 , where 𝑁𝑚𝑎𝑥 
was determined by the smaller of the two restricted sets (either the positive or the negative one) for each 
specific criterion.  We randomly chose an equal number of positive and negative controls, either applying 
each of the design criteria mentioned above (restricted reference set, RC1) or not (unrestricted reference 
set, RC2) and calculated the Area Under the Curve (AUC) in both cases. The simulation was repeated 1000 
times and AUC scores with 95% confidence intervals were calculated for both types. The difference of AUC 
scores (𝐴𝑈𝐶𝑑𝑖𝑓𝑓) was the target measure. The probability of 𝐴𝑈𝐶𝑑𝑖𝑓𝑓 being non-zero, P(|𝐴𝑈𝐶𝑑𝑖𝑓𝑓| >  0), 

was also estimated under the normality assumption. Figure 1 illustrates the framework for measuring 
differences in AUC scores for the different design criteria under consideration. 

Results 

Figure 2 shows the 𝐴𝑈𝐶𝑑𝑖𝑓𝑓 values for the different design criteria, SDAs, and reference set sizes. The size 

of the reference set did not have a considerable effect on 𝐴𝑈𝐶𝑑𝑖𝑓𝑓 of the different SDAs, which was the 

target metric. However, the associated probability of that metric being non-zero increased when 
considering larger sizes. By plotting 𝐴𝑈𝐶𝑑𝑖𝑓𝑓 for a fixed reference set size of 200 and ordering design 



 

 

criteria by increasing range of 𝐴𝑈𝐶𝑑𝑖𝑓𝑓 values among the three SDAs (Figure 3), we can observe that some 

design criteria affected performance evaluation of all three SDAs in a similar way and level of magnitude 

  

Figure 1. Testing framework for measuring differences in AUC scores for each design criterion.  

 
Figure 2. 𝐴𝑈𝐶𝑑𝑖𝑓𝑓  values for the different design criteria, SDAs, and reference set sizes under consideration. 



 

 

 

 

  

Figure 3. Ordered design criteria by increasing range of 𝐴𝑈𝐶𝑑𝑖𝑓𝑓  values among SDAs.  

(e.g. BNF – Anecdotal), while others (e.g Shared indication – False) seemed to have opposing and different 
in size effects on AUC estimates. We also identified three main categories: 

(i) Positive 𝐴𝑈𝐶𝑑𝑖𝑓𝑓 values 

a. BNF – Anecdotal 

b. EMA IME Terms 

c. BNF – Study 

d. Micromedex – Probable 

e. Micromedex – Established 

f. EMA DME Terms 

(ii) Negative 𝐴𝑈𝐶𝑑𝑖𝑓𝑓 values 

a. Common AEs 

b. BNF – Theoretical 

c. Micromedex – Theoretical 

(iii) Mixed effect on 𝐴𝑈𝐶𝑑𝑖𝑓𝑓 values 

a. AE is also an indication for at least one of the two drugs 

b. Only drug pairs that share at least one indication are included  

c. Rare AEs 

d. Drug pairs that share at least one indication are excluded 

Conclusion 

This study revealed a varying impact of design criteria for reference sets on the AUC scores of three SDAs 
that are used for DDI postmarketing surveillance. This analysis showcases that the design of reference 
sets should be performed carefully, as the comparison of SDA performance might be affected by the 
choices made when building a reference set and the decision to restrict the evaluation to specific controls. 



 

 

Also, it highlights the need for establishment of open and sizable benchmarks that include a diverse set 
of controls to ensure transparency and enable a fair evaluation of SDA performance. 
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