Design criteria for reference sets in pharmacoviailance

The case of drug-drug interactions

PRESENTER: Elpida Kontsioti, MPharm

To explore the relative impact of various choices that can be

applied to generate reference sets on the performance evaluation of three signal detection algorithms for drugdrug interaction (DDI) postmarketing surveillance.

- · Evaluation of signal detection algorithms (SDAs) in pharmacovigilance usually involves the use of custom-made reference sets, which are often limited in size and consider various exclusion and/or inclusion criteria
- · Each SDA, depending on the applied modelling, might be impacted to a different extent by a confounder. Hence, the performance evaluation might be biased based on the selected benchmarks, "favouring" some algorithms and penalising others.
- Detection of DDI-related signals might suffer from multiple confounders. Only limited efforts exist in the literature to generate reference sets related to two-way DDIs.

Signal detection algorithms for DDI surveillance

- Omega delta add
- Interaction Signal Score (IntSS)
- Reference set
- 4,455 positive controls
- 4,544 negative controls | 179 adverse events (MedDRA)
- Test data

FAERS database (AEOLUS)

Target metric

Difference of Area Under the Curve (AUC) scores between restricted and unrestricted reference sets when applying each one of the design criteria.

454 drugs (RxNorm)

Design Criteria

1. BNF - Study A. Evidence level (only applied to positive 2. BNF - Theoretical 3. BNF - Anecdotal 4. Micromedex - Established 5 Micromedex - Theoretical 6. Micromedex - Probable 1. EMA Important Medical Event (IME) Terms B. Event seriousness 2. EMA Designated Medical Event (DME) Terms

1 Common AFS

2. Rare AEs

C. Event frequency

by concomitant medication

D. Potential confounding by indication E. Potential confounding

1. Shared indications - False 2. Shared indications - True

Reference sets in pharmacovigilance should designed carefully, as restrictive control choices might cause discrepant effects between methodologies in terms of both direction and order of magnitude, hindering fair comparative evaluation. There is a for **establishment of open benchmarks** that include diverse controls to ensure transparency and limit the amount of bias added to the performance evaluation.

Figure 3. Ordered design criteria by increasing range of AUC_{diff} values among SDAs.

¹ Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK;

2 Institute for Risk and Uncertainty, University of

3 Patient Safety Centre of Excellence, AstraZeneca,

Department of Molecular and Clinical Pharmacology.

AstraZeneca 2

Liverpool, Liverpool, UK;

University of Liverpool, Liverpool, UK