

Tools for Adoption of OHDSI Data Standards

OHDSI Community Call Nov. 9, 2021 • 11 am ET

Remaining 2021 OHDSI Community Calls

Date	Topic
Nov. 9	Demos: Tools for Adoption of OHDSI Data Standards
Nov. 16	Open Network Studies
Nov. 23	History of OHDSI
Nov. 30	Collaborator Showcase Presentations
Dec. 7	How Did We Do This Year? Final OKR Review
Dec. 14	Holiday-Themed Final Meeting Of 2021

Remaining 2021 OHDSI Community Calls

Date	Topic
Nov. 9	Demos: Tools for Adoption of OHDSI Data Standards
Nov. 16	Open Network Studies
Nov. 23	History of OHDSI
Nov. 30	Collaborator Showcase Presentations
Dec. 7	How Did We Do This Year? Final OKR Review
Dec. 14	Holiday-Themed Final Meeting Of 2021

Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?

OHDSI Shoutouts!

Biedermann et al. BMC Med Res Methodol (2021) 21:23 https://doi.org/10.1186/s12874-021-01434-3 BMC Medical Research Methodology

Congratulations to Patricia

Biedermann, Rose Ong, Alexander

Davydov, Alexandra Orlova, Philip

Solovyev, Hong Sun, Graham

Wetherill, Monika Brand and Eva-

Maria Didden for the publication of

"Standardizing registry data to the

OMOP Common Data Model:

experience from three pulmonary

hypertension databases" in BMC

Medical Research Methodology.

RESEARCH

Open Access

Standardizing registry data to the OMOP Common Data Model: experience from three pulmonary hypertension databases

Patricia Biedermann¹, Rose Ong¹, Alexander Davydov², Alexandra Orlova², Philip Solovyev², Hong Sun¹, Graham Wetherill³. Monika Brand¹ and Eva-Maria Didden^{1*}

Abstract

Background: The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) can be used to transform observational health data to a common format. CDM transformation allows for analysis across disparate databases for the generation of new, real-word evidence, which is especially important in rare disease where data are limited. Pulmonary hypertension (PH) is a progressive, life-threatening disease, with rare subgroups such as pulmonary arterial hypertension (PAH), for which generating real-world evidence is challenging. Our objective is to document the process and outcomes of transforming registry data in PH to the OMOP CDM, and highlight challenges and our potential solutions.

Methods: Three observational studies were transformed from the Clinical Data Interchange Standards Consortium study data tabulation model (SDTM) to OMOP CDM format. OPUS was a prospective, multi-centre registry (2014–2020) and OrPHeUS was a retrospective, multi-centre chart review (2013–2017); both enrolled patients newly treated with macitentan in the US. EXPOSURE is a prospective, multi-centre cohort study (2017–ongoing) of patients newly treated with selexipag or any PAH-specific therapy in Europe and Canada. OMOP CDM version 5.3.1 with recent OMOP CDM vocabulary was used. Imputation rules were defined and applied for missing dates to avoid exclusion of data. Custom target concepts were introduced when existing concepts did not provide sufficient granularity.

Results: Of the 6622 patients in the three registry studies, records were mapped for 6457. Custom target concepts were introduced for PAH subgroups (by combining SNOMED concepts or creating custom concepts) and World Health Organization functional class. Per the OMOP CDM convention, records about the absence of an event, or the lack of information, were not mapped. Excluding these non-event records, 4% (OPUS), 2% (OrPHeUS) and 1% (EXPOSURE) of records were not mapped.

Conclusions: SDTM data from three registries were transformed to the OMOP CDM with limited exclusion of data and deviation from the SDTM database content. Future researchers can apply our strategy and methods in different disease areas, with tailoring as necessary. Mapping registry data to the OMOP CDM facilitates more efficient collaborations between researchers and establishment of federated data networks, which is an unmet need in rare diseases.

OHDSI Shoutouts!

The Hyve recently presented their **FAIRplus recipe** on how to make published observational research data more FAIR.

The recipe describes the work done on making data on the website of the Covid-19 EHDEN/OHDSI studyathon, held in March 2020, more findable and interoperable.

New recipe to FAIRify published observational studies and databases

05-11-21

www.thehyve.nl/articles/fairify-published-observational-studies-and-databases

Three Stages of The Journey

Where Have We Been? Where Are We Now? Where Are We Going?

Upcoming Workgroup Calls

Date	Time (ET)	Meeting
Tuesday	12 pm	Common Data Model – Vocabulary Subgroup
Wednesday	10 am	FHIR and OMOP – Digital Quality Measurements Subgroup (ZOOM)
Wednesday	2 pm	Natural Language Processing
Thursday	8 am	Psychiatry
Thursday	1 pm	OMOP CDM Oncology – CDM/Vocabulary Subgroup
Friday	10 am	Electronic Health Record
Friday	10 am	Phenotype Development and Evaluation
Friday	10:30 am	Clinical Trials
Friday	11 pm	China Chapter
Monday	10 am	GIS-Geographic Information System General Meeting
Tuesday	9 am	OMOP CDM Oncology – Genomic Subgroup

www.ohdsi.org/upcoming-working-group-calls

Get Access To Different Teams/WGs/Chapters

ATLAS				
Clinical Trials				
Common Data Model	Phenotype Development and Evaluation			
Data Quality Dashboard Development	Population-Level Effect Estimation / Patient-Level Prediction			
Early-stage Researchers	Psychiatry			
	Registry (formerly UK Biobank)			
Education Work Group	Surgery and Perioperative Medicine			
Electronic Health Record (EHR) ETL	☐ Vaccine Safety			
Geographic Information System (GIS)	☐ Vaccine Vocabulary			
HADES Health Analytics Data-to-Evidence Suite	☐ Women of OHDSI			
Health Equity				
Latin America	6. Select the chapter(s) you want to join			
Latin America	Africa			
Medical Devices	☐ Australia			
Natural Language Processing	China			
ONDET ADAC	☐ Europe			
OHDSI APAC	Japan			
OHDSI APAC Steering Committee	☐ Korea			
OHDSI Steering Committee	Singapore			
Oncology	☐ Taiwan			
Patient-Generated Health Data				
Pharmacovigiliance Evidence Investigation	7. Select the studies you want to join			
Frialmacovigiliance Evidence Investigation	HERA-Health Equity Research Assessment			

Get Access To Different Teams/WGs/Chapters

ATLAS	
Clinical Trials	
Common Data Model	
Data Quality Dashboard Development	Phenotype Development and Evaluation
Early-stage Researchers	Population-Level Effect Estimation / Patient-Level Prediction
	☐ Psychiatry
Education Work Group	Registry (formerly UK Biobank)
Electronic Health Record (EHR) ETL	Surgery and Perioperative Medicine
Geographic Information System (GIS)	☐ Vaccine Safety
	☐ Vaccine Vocabulary
HADES Health Analytics Data-to-Evidence Suite	☐ Women of OHDSI
Health Equity	
Latin America	6. Select the chapter(s) you want to join
Medical Devices	☐ Africa
Medical Devices	Australia
Natural Language Processing	China
OHDSI APAC	Europe
OUDGLADAG Steering Committee	Japan
OHDSI APAC Steering Committee	☐ Korea
OHDSI Steering Committee	Singapore
Oncology	Taiwan
Patient-Generated Health Data	
Pharmacovigiliance Evidence Investigation	7. Select the studies you want to join

2021 APAC Symposium • Nov. 18

Nov. 18 (APAC Time Zone)	Time (Korea time)	Contents	Speaker(s)
	9:00 – 9:25 am	OHDSI State of the Community	George Hripcsak/Patrick Ryan
	9:25 – 9:50 am	OHDSI APAC State of the Community	Mui Van Zandt
	9:50 – 10:00 am	Energy Break	
	10:00 – 10:25 am	EHDEN	Peter Rijnbeek
Morning	10:25 – 10:50 am	FHIR and OHDSI Collaboration	Christian Reich
	10:50 – 11:00 am	Energy Break	
	11:00 - 12:30 pm	APAC Chapter Visions for 2022	Chapter Leads
Lunch Break	12:30 – 13:00 pm		
Afternoon (in	13:00 – 14:00 pm	Workgroup Sessions (Medical Image, FHIR, CDM Tables)	
GatherTown)	14:00 – 15:00 pm	Collaboration Showcase	
	15:00 – 16:00 pm	APAC Study Sessions	

www.ohdsi.org/apac

2021 APAC Symposium • Nov. 18

WG – Medical Imaging
Seng Chan You
Assist. Professor
Yonsei University Health System

WG – FHIR Collaboration
Christian Reich
VP IQVIA, OHDSI founder

Adam Chee
Chief of Smart Health Leadership Centre, NUS

WG - CDM v5.4

Clair Blacketer
Assoc. Director Janssen

APAC Study Session

Marc Suchard Professor, UCLA

www.ohdsi.org/apac

ohdsi

EHDEN Data Partner Call Concludes Nov. 15

DATA PARTNER CALL

5th Open call for data partners wanting to map their patient data to the OMOP common data model to enhance and accelerate research and healthcare decision making.

- Work with one of 26 EHDEN Certified SMEs
- Up to 100 000 € grant for mapping cycle
- Rapid evaluation & turnaround

October 13th - November 15th

EHDEN.EU

OHDSI
Open-Source
Governance
Workshop

Nov. 29, 2021 9 am – 1 pm

The operating code for how our organization comes together and builds things.

- Software
- **Book of OHDSI**
- Common data model
- Conferences
- **Studyathons**

OHDSI Open-Source Governance

"We want our technology stack to be easy to install, use, integrate, and contribute to."

- Would like to encourage more contributors
- Would like to see more organizations
- Would like to reduce technical debt of support
- Would like to learn how to better recognize those that contribute through code
- We would like to increase the velocity of our development cycle

Package statuses

The table below lists, for each of the HADES packages, the following details:

- Version: The latest released version.
- . Maintainer(s): The persons responsible for the package. Only maintainers can create releases.
- Availability: whether the package can be installed from CRAN (using install.packages()), or needs to be installed from GitHub (using remotes::install github()).
- . Open issues: The number of open issues.
- . Open pull-requests: The number of open pull-requests.
- Build status: Whether the package passes R Check (including unit tests) on several different operating systems, and using various database
 platforms. The status shown is of the the latest push, including those to develop branches. Released packages (in the master branch) by
 definition have successful builds, and are not shown here.
- . Coverage: The percentage of lines of code that is covered by the unit tests in the master branch (i.e. in the latest released version).

Package	Version	Maintainer(s)	Availability	Open issues	Open pull- requests	Build status	Coverage
Andromeda	v0.5.0	Adam Black	CRAN	7	0	() R-O40-chrisk paraling	codecov 87%
BigKnn	v1.0.1	Martijn Schuemie	GitHub		0	() R-OHD-check passing	codecov 96%
CirceR	V1.1.1	Chris Knoll	GitHub		0	() R-OHD chick passing	codecov 87%
CohortDiagnostics	v2.1.3	Gowtham Rao	GitHub	22		() R-OHD-check passing	codecov 82%
CohortMethod	v4.2.1	Martijn Schuemie	GitHub	-	0	() R-OND-chick parring	codecov 86%
Cyclops	v3.1.2	Marc Suchard	CRAN	6	0	() R-O40-check passing	codecov 67%
DatabaseConnector	v4.0.2	Martijn Schuemie	CRAN	10	0	() R-CMD-check failing	codecov 40%
EmpiricalCalibration	v3.0.0	Martijn Schuemie	CRAN	0	0	C) R-CMD-chick paining	codecov mone
Eunomia	v1.0.1	Frank DeFalco	CRAN	2	0	() R-CMD-check failing	codecov 72%
EvidenceSynthesis	v0.2.3	Martijn Schuemie	CRAN		0	() R-OND-check poising	codecov 41%
FeatureExtraction	v3.1.1	Anthony Sena	GitHub	22	E3	() R-O40-check pavaling	codecov 16%
Hydra	v0.2.0	Martijn Schuemie	GitHub	9	0	() R-O40-check passing	codecov 0%
MethodEvaluation	v2.1.0	Martijn Schuemie	GitHub		0	() R-O40-check passing	codecov 0%
OhdsiSharing	v0.2.2	Lee Evans	GitHub		0	O R-O40-sheck passing	codecov 0%
ParallelLogger	v2.0.2	Martijn Schuemie	CRAN	1	0	() R-CMD-check pareing	codecov 54%
PatientLevelPrediction	v4.3.10	Jenna Reps & Peter Rijnbeek	GitHub	33	0	() R-O40-check passing	codecov 14%
ROhdsiWebApi	v1.2.0	Gowtham Rao	GitHub	11	2	() R-OND-check parried	codecay See

Roles in an open-source project

- Coders,
- architects,
- reviewers,
- leaders,
- organizers,
- supporters,
- helpers,
- questioners,
- explainers,
- moderators

- Writing code
- Promotion of amazing people and projects
- Leading contributor communities
- Technical projection leadership
- Managing communication
- Updating documentation
- Answering questions form community members

The 4 Pillars of Successful Open-Source Communities (maximilianmichels.com)

Learning from large open-source communities Open-Source Program Office @ JHU Stephen Walli. Azure Office of the CTO, Microsoft

Using the Johns Hopkins OSPO as a coordination point, half-day of tutorial/workshop (virtual) and discussion for OHDSI audience

- 1. The software engineering economics of consumption + contribution, and of project production.
- 2. The nature of success (a healthy contribution flow) and building onramps for users, developers, and contributors.
- 3. The care and feeding of culture and governance over the long term.

Evaluation of vaccine concept mappings in the OMOP vocabulary: a real-world database study

♣ PRESENTER: Adam Black Denys Kaduk

INTRO

The OHDS community and OMOP common data model support robust observational studies across multiple datasets and institutions. However, the quality issues of vaccine related concepts in the OMOP vocabulary pose a significant barrier to efficient and high-quality studies. Following our previous quality assessment of vaccine vaccabularies and concepts related to influenza, pneumococcal disease, and shingles ¹, we expanded the evaluation to all vaccine types, but with a focus on the "Maps to Trelationship between source concept and standard vaccine concepts.

METHODS

- Iterative regular expressions-based pattern matching and manual review were used to identify a starting set of vaccine concepts.
- The starting set of vaccines concepts was then expanded using concept relationship and hierarchies in the OMOP vocabulary. The expanded list of vaccine concepts was manually reviewed for accuracy.
- Once the comprehensive list of vaccine concepts was complete, all "Maps to" relationships involving vaccines were extracted from the concept_relationship table.
- Occurrences of each source_concept_id standard_concept_id pair were counted in the drug_exposure and procedure_occurrence e tables in five OMOP CDM databases
- "Maps to" relationships that occurred in at least one dataset were manually reviewed for accuracy by a clinical expert and mapping errors were grouped into four categories

DESI II TO

We found 15,932 vaccine-related concepts in 32 vocabularies (Table 1). From these concept we extracted 15,200 'Maps for 'feationships and reviewed 1,170 source_concept_id - standard_concept_i djarls with >-10 courrent in any of the 5 CDM datasets we have access to. The clinical expert on our team identified potential problems with 104 mappings (8.89% of the mappings reviewed), as summarized in Table 2.

A manual review of vaccine mappings in the OMOP CDM identified several errors which can lead to incorrect results in research.

Vaccine concept in usage in 5 OMOP datasets

Mapping issue category	Definition and Example	# and % with mapping issues
Lack of complete mapping	A vaccine mapping that did not capture all components or ingredients of the vaccine. [45488921] "Third low dose dightheria, fetanus and inactivated polio veccination" maps to [529411] betanus and [529803] dightheria but not polio.	68 (65.4%
Incorrect mapping	A vaccine mapping where the standard concept is not synonymous with the source concept. [21601291] "hemophilus influenzoe B, purified onlipen conjugated; systemic" maps to [515671] "Neisseria meningitidis".	21 (20.1%
Imprecise mapping	A vaccine mapping where important information is either removed or added. [2213439] "fifthereas vivis vaccine, trivalent (1013), split vivus, 0.25 mt dosage, for intramascular uses" maps to [40213153] "influenza, seasonal, injectoale" which draps information about dosage, noute, and valence.	6 (5.8%)
Questionable mapping	A vaccine mapping that is not necessarily incorrect but should be reviewed by the vaccinishment to the reviewed by the vaccinishment between the result of the reviewed by the	9 (8.7%)

Yupeng Li, Lixia Yao

MONDAY

Evaluation of vaccine concept mappings in OMOP vocabulary: a real-world database study

Authors: Denys Kaduk, Adam Black, Yupeng Li, Lixia Yao

TUESDAY

Covid-19 Pandemic impacts on mental health Related conditions Via multi-database network: a Longitudinal Observational study (CERVELLO)

Authors: Carmen Olga Torre, Kenneth Man, Hao Luo (presenter), Wallis Lau, Ian Wong

WEDNESDAY

Development of a Machine-learning Model to Predict Antibiotic Resistance using Urine Culture and Antibiotic Susceptibility Data Authors: Chungsoo Kim, Sandy Jeong Rhie, Rae Woong Park

THURSDAY

ARES: A Research Exploration System

Authors: Frank J DeFalco, Alan Andryc, Anthony Molinaro, Clair Blacketer

Phenotype Development and Evaluation of Heart Failure: A Case Study Development and Evaluation of Heart Failure: A Case Study in using Patient Level Prediction to Improve Phenotype Validity

Pooja M. Desai, Anna Ostropolets, Lauren R. Richter, Harry Reyes Nieva, Matthew Spotnitz, Victor A. Rodriguez, Tony Y. Sun, Karthik Natarajan

Department of Biomedical Informatics, Columbia University Medical Center

INTRODUCTION

- · Establishing robust, high fidelity phenotypes to isolate incident cases (i.e., new onset) of a chronic condition is challenging. A common reason is index date misspecification, when a condition's actual onset date differs from the onset date of record.
- The proposed OHDSI pipeline for rigorous phenotype development and evaluation comprises of the following steps:

• This study demonstrates how Patient Level Prediction (PLP), a tool intended for use after phenotype evaluation, can be used as a second round evaluation to test. validate and further refine phenotype definitions.

CASE STUDY: HEART FAILURE & TZD USE

- Thiazolidines (TZDs) are a potent class of anti-diabetic drugs that can increase the risk of heart failure (HF) exacerbations, even among patients without a known HF diagnosis.
- Case Study Aim: Predict the risk of HF-related hospitalization among TZD mono-therapy patients with and without a prior history of HF using both Columbia University Irving Medical Center (CUIMC) and Commercial Claims and Encounters (CCAE) data.
- . Following literature review, we defined HF as: (1) a condition occurrence of HF diagnostic codes, (2) observation of HF related condition codes, (3) condition occurrence of HF-related codes, or (4) ECG ejection fraction measurement under 50%.
- A total of 30,361 TZD mono-therapy patients hospitalized for HF were identified (CUMC N=1,330; CCAE N=29,031). 96.3% of all patients (N=29, 230) appeared to have no prior HF.

FINDINGS

- Initial ATLAS cohort characterization suggested face validity and appeared to clearly distinguish between TZD patients with and without prior HF.
 - TZD Patients with HF: Top drug occurrence showed aspirin, hydrochlorothiazide, and furosemide (drugs indicative of HF). Top condition occurrences showed diabetes, hypertension and congenital HF.
 - TZD Patients without HF: Top drug showed aspirin but no HF specific drugs. Top condition occurrences showed diabetes and hypertensio
- PLP models appeared able to predict HF hospitalization for patients with HF (CUMC AUC=0.55; CCAE AUC= 0.756) and without HF (CUMC AUC=0.527; CCAE AUC=0.804)
- However, a review of top PLP features showed drug and condition features specific to HF were predictive of future hospitalization, even among patients without a history of HF
 - Drug Predictors: Furosemide (β = 0.68, CCAE); Beta-Blockers (β = 0.43, CCAE; β = 0.34, CUMC)
 - Condition Predictors: Heart Disease (β = 0.41, CUMC)
- This indicates flaws in our HF definition despite face validity, likely due to index date misspecification.

LESSONS FOR THE OHDSI COMMUNITY

- Incorporate and test multiple time windows when establishing a look-back period for phenotype definitions if calculating incidence rates
- 2 Leverage existing OHDSI tools (e.g. Cohort Diagnostics) to understand potential inconsistencies, particularly one
- Utilize the PLP package as a second evaluation of outcome and target phenotype definitions by reviewing

FRIDAY

Phenotype Development and Evaluation of Heart Failure: A Case Study in using Patient Level Prediction to Improve Phenotype Validity Authors: Pooja M. Desai, Anna Ostropolets, Lauren R. Richter, Harry Reyes Nieva, Matthew Spotnitz, Victor A. Rodriguez, Tony Y. Sun, Karthik Natarajan

Where Are We Going?

Any other announcements of upcoming work, events, deadlines, etc?

Three Stages of The Journey

Where Have We Been? Where Are We Now? Where Are We Going?

Nov. 9: Tools For Adoption Of OHDSI Data Standards

Introduction To CDM 5.4

Clair Blacketer

OHDSI Vocabularies

Michael Kallfelz

Maxim Moinat

ETL Inspection Report