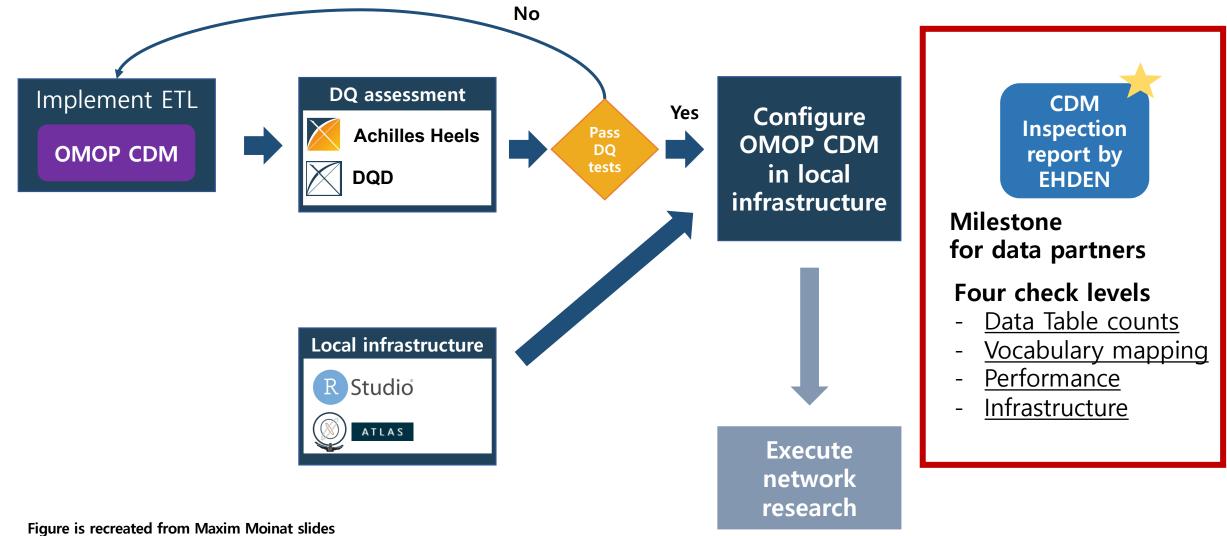


Current Status of OMOP Common Data Model and Presentation of References for Data Quality Assessment

Chungsoo Kim, Seongwon Lee, Rae Woong Park on behalf of OHDSI Korea Network

Background

Background


- The CDM conversion process is consists of vocabulary mapping and data extract, transform and load (ETL) process.
- Conversion principle of OMOP-CDM does not only equate to the data structure but transforms the meaning of data identically.
- Errors can occur at any step of the CDM conversion.
- There are some tools (Achilles Heel, DQD) to check the quality of data in the ETL process that have been developed.^{1), 2)}
- However, quality assessment is performed only within each database. Also, there are currently no references about other CDMs that can be used as a practical guide.
- In order to make a feedback loop of data quality assessment, a process for disclosing descriptive statistics about the CDM is required.

1) Callahan TJ, Bauck AE, Bertoch D, Brown J, Khare R, Ryan PB, Staab J, Zozus MN, Kahn MG. A Comparison of Data Quality Assessment Checks in Six Data Sharing Networks. EGEMS (Wash DC). 2 017 Jun 12;5(1):8. doi: 10.5334/egems.223. PMID: 29881733; PMCID: PMC5982846.

2) Clair Blacketer, Frank J Defalco, Patrick B Ryan, Peter R Rijnbeek, Increasing trust in real-world evidence through evaluation of observational data quality, Journal of the American Medical Informatics A ssociation, Volume 28, Issue 10, October 2021, Pages 2251–2257, https://doi.org/10.1093/jamia/ocab132

Background

(21/11/10, at OHDSI community call)

- To present descriptive statistics and data distribution of converted CDM and evaluate the homogeneity of CDM conversion.
- To provide the statistics which can be used as references for future CDM conversion.

Methods

Methods

- Data sources: Sixteen CDM databases from OHDSI Korea community
- Collecting inspection reports from each site.
- R package for automatically creating inspection reports.
- Collectibles
 - Number of record, person, and its ratio
 - Number of unique concepts per person
 - Source-CDM mapping ratio
 - Proportion of standard concepts in mapped codes
 - Drug mapping level (granularity)
 - Sample cohort patient rate and query execution time
 - Frequent concept list in each domain
 - Achilles heel result (error / notification / warnings)

Methods

- Statistical analysis
 - Descriptive analysis : Mean ± SD / Median / Min, Max
 - Hypothesis test
 - Continuous variables : Wilcoxon rank sum test (Mann-Whitney test)
 - Categorical variables : Chi-square test, Fisher's exact test
- Subgroup analysis
 - By hospital classification
 - By data period
 - By ETL software

- Ethical consideration
 - Unnecessary to review by the institutional review board (Confirmed by IRB).

Results

Results

Summary

- Total number of persons included = 20,626,345
- Mean of data duration(s) = 15.6 ± 8.9 years

Hospital classification

- n of Tertiary GH = 10 sites
- n of GH = 6 sites

ETL software

- n of Commercial Off-The-Shelf = 10 sites
- n of in-house = 6 sites

Table 1. General information and conversion period of each site

	Site	Classification	Beds	Period	Duration	CDM version	ETL Software
	Site A	General hospital	< 500	2017-2019	3	5.3	COTS
	Site B	General hospital	< 500	2010-2020	11	5.3	COTS
	Site C	Tertiary general hospital	> 500	2015-2020	6	5.3	In-house
	Site D	Tertiary general hospital	> 500	2003-2021	19	5.3	COTS
	Site E	General hospital	> 500	2012-2020	9	5.3	In-house
	Site F	Tertiary general hospital	> 1,000	2012-2020	9	5.3	In-house
	Site G	Tertiary general hospital	> 500	2003-2021	19	5.3	COTS
16 institutions	Site H	General hospital	> 500	2007-2020	14	5.3	In-house
	Site I	General hospital	> 500	2003-2021	19	5.3	COTS
	Site J	Tertiary general hospital	> 500	2005-2021	17	5.3	COTS
	Site K	General hospital	> 500	1986-2019	34	5.3	COTS
	Site L	Tertiary general hospital	> 1,000	2002-2020	19	5.3	In-house
	Site M	Tertiary general hospital	> 500	1996-2019	24	5.3	COTS
	Site N	Tertiary general hospital	> 1,000	1994-2021	28	5.3	COTS
	Site O	Tertiary general hospital	> 1,000	2020-2020	1	5.3	COTS
	Site P	Tertiary general hospital	> 1,000	2004-2020	17	5.3	In-house

n: number; COTS: Commercial off-the-shelf

Summary of data counts in CDM

- There are data on 330 million cases of condition occurrence and 1.13 billion records of drug exposure.
- Measurement has the largest amount of data (45% of the total) compared to other domains with about 5.85 billion cases.
- The observation period should be at least one per patient, but about 10% of missings exist.
- Mortality was 0.9% to enrolled patients

Records by CDM domain Person for Person for Record counts Person counts total person (%) total observation period (%) **CDM** Tables care site condition era Mean ± SD Mean ± SD n n Cost condition occurrence cost 69.7 + 21.178.4 + 11.7 Condition occurrence 332.146.075 12.680.160 death Death 147,409 147,409 0.9 ± 0.6 0.9 ± 0.5 device exposure Procedure dose era 44.3 + 25.851.2 + 23.8Device exposure 226,486,987 7.293.989 drug_era drug exposure 66.5 ± 9.5 Drug exposure 1,130,064,321 10,913,995 59.9 ± 18.4 Drug Iocation Measurement 5,858,087,140 10,770,947 58.3 ± 19.9 64.1 ± 11.1 exposure measurement note Note 166.876.625 6.056.244 40.3 ± 24.5 41.5 ± 24.4 observation 242,276,799 5,985,790 35.6 ± 21.6 40.4 ± 19.7 Observation observation period payer_plan_period Observation period 20,992,799 16,707,624 89.7 ± 23.9 100.0 + 0.0person 172.0 ± 250.8 20,626,345 20,626,345 100.0 ± 0.0 procedure occurrence Person provider Procedure occurrence 1,521,547,916 13,249,855 71.5 ± 23.6 80.0 ± 13.5 specimen visit details 39.2 + 26.9Specimen 958.349.919 8.153.761 43.0 ± 25.1 visit occurrence 16,094,584 84.2 ± 24.9 93.9 ± 12.3 Visit occurrence 226,210,891 Measurement

Table 2. Summary of record counts and record per person ratio from common data model databases.

n: number; SD: standard deviation

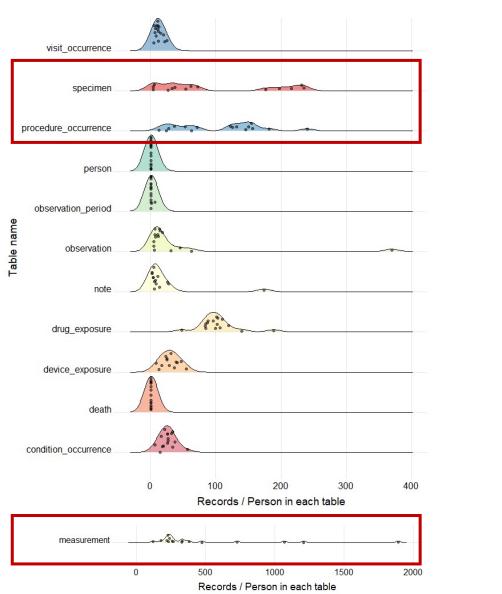
Summary of data counts in CDM

• Although tertiary general hospitals contain about 2.03 times the number of patients compared to general hospitals, Observation is 3.5 times, Measurement is 4 times, and Note is 11 times.

			Classicfication of institution					
CDM Tables —		Tertiary GH (n = 10)	GH (n = 6)					
Condition occurrence		25,406,771.6	13,013,059.8					
Death		13,145.4	4,850.0					
Device exposure		24,324,813.9	9,368,881.7					
Drug exposure		86,968,078.7	43,397,255.7					
Measurement	x4	508,906,881.2	128,169,721.3					
Note	x11	19,545,511.3	1,752,089.2					
Observation	x3.5	22,572,087.0	6,521,336.0					
Observation period	x3.5	1,691,655.5	679,374.0					
Person	x2	1,592,322.1	783,854.0					
Procedure occurrence		107,266,289.9	74,814,169.5					
Specimen		88,659,262.9	41,512,636.0					
Visit occurrence		18,759,832.9	6,435,427.0					

Table 2. Summary of mean record counts from common data model databases by subgroups.

n: number; SD: standard deviation

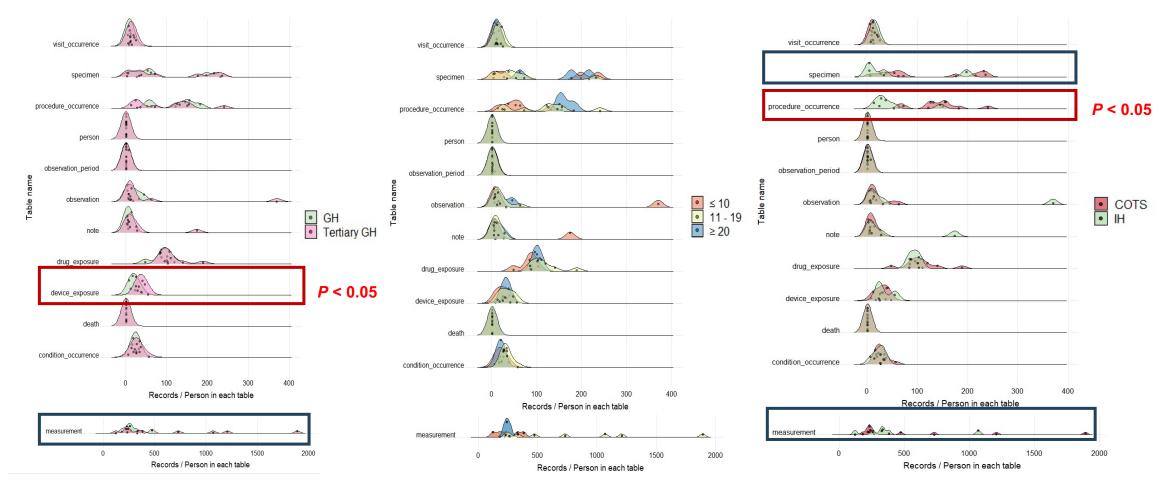

Records/Persons :

Regardless of the number of person by institution, the record per person ratio can be used as a reference value.

- In each CDM tables, the ratio of the number of records per person by institution showed a similar distribution.
- Mesurement, specimen, procedure tables have different rates at each institution.
- Table with normal distribution:

Condition_occurrence, Device exposure, Procedure occurrence, Visit occurrence

	Record per person (median, IQR)
Visit_occurrence	11.5 [8.4-14.1]
Specimen	57.9 [27.0-197.7]
Procedure_occurrence	124.0 [44.8-152.8]
Observation_period	1.0 [1.0-1.0]
Observation	11.7 [7.0-24.7]
Note	6.6 [4.1-14.1]
Drug_exposure	100.5 [86.1-108.6]
Device_exposure	29.0 [23.0-38.8]
Condition_occurrence	26.1 [18.9-33.2]
Measurement	296.9 [231.2-601.4]



아주대학교 Ajou UNIVERSITY

Ratio of records per person by CDM tables

• By subgroups (hospital classification, data duration,)

Results – Mapping

Mapping rate of institutions applying ETL commercial solutions

- In institutions applying in-house ETL solutions, only mapped data were loaded into CDM, or domain_source_value (nullable) was not entered, so it was difficult to calculate the mapping ratio compared to the original source.
- Condition and drug show a mapping rate of over 90% in all institutions.
- It was found that the mapping rate of measurement, measurement-value and procedure was low.
- Most are mapped in standard vocabulary.

Ready for analysis

Table 3-1. Summary result of record mapping to the OMOP concept from common data model database converted by COTS

Domain	Mapping code	es / source codes	Mapped reco	rds / total records	Mapped as standard / Mapped records		
Domain	Mean ± SD	Median [min, max]	Mean ± SD	Median [min, max]	Mean ± SD	Median [min, max]	
Condition	97.0 ± 3.6	98.9 [72.5, 100.0]	99.2 ± 1.4	99.8 [95.4, 99.9]	100.0 ± 0.1	100.0 [99.8, 100.0]	
Device	62.4 ± 14.4	54.4 [38.5, 87.2]	80.1 ± 12.6	82.6 [57.9, 96.4]	78.2 ± 21.6	79.3 [46.1, 100.0]	
Drug	76.6 ± 21.2	83.0 [18.7, 100.0]	96.7 ± 2.5	97.5 [90.3, 99.0]	98.0 ± 0.9	98.2 [95.8, 99.0]	
Measurement	25.7 ± 28.4	26.1 [4.1, 26.1]	64.6 ± 37.9	67.4 [0.2, 99.7]	100.0 ± 0.0	100.0 [99.9, 100.0]	
Measurement-unit	99.6 ± 1.2	100.0 [0.0, 100.0]	100.0 ± 0.0	100.0 [100.0, 100.0]	99.6 ± 1.1	100.0 [96.8, 100.0]	
Measurement-value	18.7 ± 30.4	13.3 [0.0, 100.0]	15.3 ± 29.9	5.0 [2.6, 100.0]	100.0 ± 0.0	100.0 [100.0, 100.0]	
Observation	81.2 ± 32.6	98.9 [4.1, 100.0]	70.0 ± 34.8	86.0 [7.2, 99.0]	100.0 ± 0.0	100.0 [100.0, 100.0]	
Observation-unit	100.0 ± 0.0	100.0 [0.0, 100.0]	100.0 ± 0.0	100.0 [100.0, 100.0]	66.7 ± 57.7	100.0 [0.0, 100.0]	
Observation-value	50.0 ± 0.0	50.0 [50.0, 100.0]	83.3 ± 9.5	84.7 [68.9, 96.5]	100.0 ± 0.0	100.0 [99.9, 100.0]	
Procedure	58.6 ± 10.8	62.3 [35.7, 100.0]	31.7 ± 17.3	25.0 [16.4, 75.2]	100.0 ± 0.0	100.0 [99.9, 100.0]	
Visit_occurrence	100.0 ± 0.0	100.0 [100.0, 100.0]	100.0 ± 0.0	100.0 [100.0, 100.0]	100.0 ± 0.0	100.0 [100.0, 100.0]	

SD: standard deviation

Drug mapping

• For drug mapping, 74.2% (mean 62.5%) of median drug mapping rate was mapped to branded drugs.

Voosbulory		N of records	Mapped recor	Mapped records / total records			
Vocabulary	Classification	N of records	Mean ± SD	Median [min, max]			
AMT	Substance	13,335	0.0 ± 0.0	0.0 [0.0, 0.0]			
ATC	ATC 2 nd	841,854	0.1 ± 0.1	0.1 [0.0, 0.19]			
	ATC 3 rd	1,949,586	0.2 ± 0.1	0.2 [0.0, 0.40]			
	ATC 4 th	5,436,777	0.5 ± 0.4	0.6 [0.0, 1.3]			
	ATC 5 th	7,246,084	0.7 ± 0.9	0.3 [0.0, 2.9]			
EDI	Drug Product	77,292	0.0 ± 0.1	0.0 [0.0, 0.2]			
HCPCS	HCPCS	90	0.0 ± 0.0	0.0 [0.0, 0.0]			
NDFRT	Pharma Preparation	592	0.0 ± 0.0	0.0 [0.0, 0.0]			
RxNorm (Extension)	Brand Name	12,621	0.0 ± 0.0	0.0 [0.0, 0.0]			
	Branded Drug	393,881,396	41.1 <u>+</u> 25.8	47.6 [0.0, 72.3]			
	Branded Drug Box	853	0.0 <u>+</u> 0.0	0.0 [0.0, 0.0]			
	Branded Drug Comp	204,478	0.0 ± 0.1	0.0 [0.0, 0.3]			
	Branded Drug Form	33,233	0.0 ± 0.0	0.0 [0.0, 0.0]			
	Branded Form	362,260	0.1 ± 0.3	0.0 [0.0, 1.0]			
	Clinical Dose Group	31	0.0 ± 0.0	0.0 [0.0, 0.0]			
	Clinical Drug	270,984,174	19.6 <u>+</u> 27.0	6.8 [0.0, 67.3]			
	Clinical Drug Box		0.0 ± 0.0	0.0 [0.0, 0.0]			
	Clinical Drug Comp	6,312,940	0.4 ± 1.0	0.0 [0.0, 2.9]			
	Clinical Drug Form	18,269,904	1.2 ± 2.1	0.1 [0.0, 7.4]			
	Clinical Pack	8,535	0.0 ± 0.0	0.0 [0.0, 0.0]			
	Dose Form		0.0 ± 0.1	0.0 [0.0, 0.3]			
	Ingredient	17,177,193	1.3 ± 1.4	1.2 [0.0, 5.4]			
	Marketed Product	46,345,203	3.3 ± 4.4	0.2 [0.0, 11.2]			
	Precise Ingredient	253,219	0.0 ± 0.0	0.0 [0.0, 0.1]			
	Quant Branded Box	133	0.0 ± 0.0	0.0 [0.0, 0.0]			
	Quant Branded Drug	239,476,161	21.4 ± 13.7	26.6 [0.0, 37.2]			
	Quant Clinical Drug	79,690,401	6.4 ± 11.3	0.0 [0.0, 35.5]			
SNOMED	Pharma/Biol Product	3,601,700	0.6 <u>+</u> 2.5	0.0 [0.0, 10.0]			
Undefined	Undefined	34,348,575	2.9 <u>+</u> 2.9	2.2 [0.0, 9.7]			
VA Product	VA Product	96	0.0 ± 0.0	0.0 [0.0, 0.0]			

Table 4. Vocabulary granularity in drug exposure table

SD: standard deviation

Results – Achilles Heel results

Achilles Heel

- Mean of 5.9 errors (median 1.5) across all institutions.
- There were no significant difference in error occurrence by hospital classification and data duration.
- There was a difference in the error rate according to the ETL software, which was significantly lower in COTS (P < 0.01).

	Overall (n = 18)		Classification of institutions				Data duration						ETL Software			
			GH (n = 6)		Tertiary GH (n = 10)		≤ 10 yrs (n = 5)		11 – 19 yrs (n = 8)		≥ 20 yrs (n = 3)		IH (n = 6)		COTS (n = 10)	
	Mean ± SD	Median [Q1-Q3]	Mean ± SD	Median [Q1-Q3]	Mean ± SD	Median [Q1-Q3]	Mean ± SD	Median [Q1-Q3]	Mean ± SD	Median [Q1-Q3]	Mean ± SD	Median [Q1-Q3]	Mean ± SD	Median [Q1-Q3]	Mean ± SD	Median [Q1-Q3]
Error	5.7 ± 8.0	1.5 [0-8]	6.3 ± 8.3	3.0 [0.25-9.5]	5.1 ± 8.2	1.5 [0.0-5.8]	2.6 ± 4.8	0.0 [0.0-2.0]	9.1 ± 9.6	6.0 [0.8-16.5]	1.0 ± 1.0	1.0 [0.5-1.5]	12.2 ± 9.8	13.0 [4.3-19.5]	1.6 ± 2.5	0.5 [0.0-1.8] [‡]
Notification	6.9 ± 2.8	7.5 [6.3-8.3]	7.8 ± 1.2	7.5 [7.0-8.0]	6.4 ± 3.4	7.5 [3.3-8.8]	6.0 ± 3.6	7.0 [3.0-7.0]	6.9 ± 2.6	7.5 [6.3-8.3]	8.7 ± 1.2	8.0 [8.0-9.0]	4.7 ± 3.2	3.5 [2.3-6.3]	8.3 ± 1.3	8.0 [7.3-8.8]
Warning	17.1 ± 6.3	18.0 [16.5-21.0]	17.3 ± 8.1	19.0 [17.0-22.5]	16.9 ± 5.4	18.0 [15.5-20.8]	16.2 ± 7.0	17.0 [15.0-20.0]	18.4 ± 3.9	18.0 [17.0-21.0]	15.0 ± 11.4	20.0 [11.0-21.5]	15.5 ± 6.8	16.5 [12.0-21.8]	17.7 ± 5.9	19 [17.0-21.0]

Table 6. Achilles heel results by the conversion subject.

SD: standard deviation; Q1: first quartile; Q3: third quartile; GH: general hospital; IH: in-house; COTS: commercial off-the-shelf; [‡] statistically significant

Results – Performance

Test cohort generation

- Test cohorts (5 of each difficulty level) were created to evaluate the possibility of an observational study.
- Performed according to query difficulty, high complexity cohort failed (cannot generate cohorts within 3 days) in 3 institutions
 - \rightarrow It depends on DB size and hardware specifications.
 - \rightarrow Need for minimum standard hardware specifications for each DB size

Table 4. Cohort generation result for evaluating potentials of observational study

Difficulty	Name	Name Criteria N Prevalence (%)		Querying time (s)	N of institution which fail to generate	
1	HT with diagnosis	Diganosis	796,419	5.3 ± 3.9	17.8 ± 14.4	0
2	T2DM with diagnosis	Diganosis	342,982	2.1 ± 1.5	11.8 ± 9.4	0
3	MACE	Diagnosis, visit	91,771	0.5 ± 0.4	129.4 ± 196.4	0
4	HT with diagnosis and drug	Diagnosis, drug	445,110	2.9 ± 2.3	432.5 ± 1402.8	0
5	T2DM with diagnosis and drug	Diagnosis, drug with event censoring	39,519	0.3 ± 0.2	61926.4 ± 98233.5	3

SD: standard deviation; HT: hypertension; T2DM: type 2 diabetes mellitus; MACE: major adverse cardiac event

Discussion

Highlights

- This is the first study to collect and present descriptive statistics on multi-institutional CDM in Korea.
- We checked data distribution (distribution of records per patient), mapping, quality assessment results, and sample cohort generation.
- In addition, the results are presented by institution classification, data conversion period, and ETL software as subgroup analysis.
- It can be used as a reference for future ETL.
- Through continuous CDM Inspection report management, it can contribute to quality improvement.

Thank you

