Welcome To OHDSI in 2022!

OHDSI Community Call
Jan. 11, 2022 • 11 am ET
Future OHDSI Community Calls

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 11</td>
<td>Welcome To OHDSI in 2022</td>
</tr>
<tr>
<td>Jan. 18</td>
<td>Gathertown: Workgroup Meetings and Information Sessions</td>
</tr>
<tr>
<td>Jan. 25</td>
<td>Implementation of the N3C NLP Pipeline</td>
</tr>
<tr>
<td>Feb. 1</td>
<td>Introduction to Phenotype February</td>
</tr>
<tr>
<td>Feb. 8</td>
<td>Phenotype February Report #1, Workgroup Updates</td>
</tr>
<tr>
<td>Feb. 15</td>
<td>Phenotype February Report #2, Workgroup Updates</td>
</tr>
<tr>
<td>Feb. 22</td>
<td>Phenotype February Report #3, Workgroup Updates</td>
</tr>
</tbody>
</table>
Future OHDSI Community Calls

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 11</td>
<td>Welcome To OHDSI in 2022</td>
</tr>
<tr>
<td>Jan. 18</td>
<td>Gathertown: Workgroup Meetings and Information Sessions</td>
</tr>
<tr>
<td>Jan. 25</td>
<td>Extracting COVID Features Using NLP</td>
</tr>
<tr>
<td>Feb. 1</td>
<td>Introduction to Phenotype February</td>
</tr>
<tr>
<td>Feb. 8</td>
<td>Phenotype February Report #1, Workgroup Updates</td>
</tr>
<tr>
<td>Feb. 15</td>
<td>Phenotype February Report #2, Workgroup Updates</td>
</tr>
<tr>
<td>Feb. 22</td>
<td>Phenotype February Report #3, Workgroup Updates</td>
</tr>
</tbody>
</table>
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?

Open access

BMJ Open

Characteristics and outcomes of patients with COVID-19 with and without prevalent hypertension: a multinational cohort study

ABSTRACT

Objectives To characterize patients with and without prevalent hypertension and COVID-19 and to assess adverse outcomes in both inpatients and outpatients.

Design and setting: This was a retrospective cohort study using 15 healthcare databases (primary and secondary electronic healthcare records, insurance and national claims data from the USA, Europe, and South Korea, standardized to the Observational Medical Outcomes Partnership common data model. Data were gathered from March 1 to 31 October 2020.

Participants: Two non-mutually exclusive cohorts were defined: (1) individuals diagnosed with COVID-19 (diagnosis cohort) and (2) individuals hospitalised with COVID-19 (hospitalised cohort), and stratified by hypertension status. Follow-up was from COVID-19 diagnosis/hospitalisation to death, or end of the study period or 30 days.

Outcomes: Demographics, comorbidities and 30-day outcomes hospitalisation and death for the...
Congratulations to co-authors Anastasiya Nestsiarovich, Jenna Reps, Michael Matheny, Scott DuVall, Kristine Lynch, Maura Beaton, Xinzhuo Jiang, Matthew Spotnitz, Stephen Pfohl, Nigam Shah, Carmen Olga Torre, Christian Reich, Dong Yun Lee, Sang Joon Son, Seng Chan You, Rae Woong Park, Patrick Ryan & Christophe Lambert on the study “Predictors of diagnostic transition from major depressive disorder to bipolar disorder: a retrospective observational network study” which was published in Translational Psychiatry on Dec. 20.
Congratulations to co-authors Sooin Choi, Soo Jeong Choi, Jin Kuk Kim, Ki Chang Nam, Suehyun Lee, Ju Han Kim and You Kyoung Lee on the study “Preliminary feasibility assessment of CDM-based active surveillance using current status of medical device data in medical records and OMOP-CDM” which was published in Scientific Reports on Dec. 15.
OHDSI Shoutouts!

Congratulations to co-authors Nicolas Paris, Antoine Lamer and Adrien Parrot on the study “Transformation and Evaluation of the MIMIC Database in the OMOP Common Data Model: Development and Usability Study” which was published in JMIR Medical Informatics on Dec. 14.
OHDSI Shoutouts!

Congratulations to co-authors Jenna Reps, Patrick Ryan, and Peter Rijnbeek on the study “Investigating the impact of development and internal validation design when training prognostic models using a retrospective cohort in big US observational healthcare data” which was published in BMJ Open on Dec. 24.
OHDSI Shoutouts!

Congratulations to Mui Van Zandt, who was recently promoted to VP & GM Real World Data & Tech at IQVIA.
OHDSI Shoutouts!

Any shoutouts from the community? Please share and help promote and celebrate OHDSI work!

Have a study published? Please send to sachson@ohdsi.org so we can share during this call and on our social channels. Let’s work together to promote the collaborative work happening in OHDSI!
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
Upcoming Workgroup Calls

<table>
<thead>
<tr>
<th>Date</th>
<th>Time (ET)</th>
<th>Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>12 pm</td>
<td>Common Data Model – Vocabulary Subgroup</td>
</tr>
<tr>
<td>Tuesday</td>
<td>2 pm</td>
<td>Health Equity</td>
</tr>
<tr>
<td>Wednesday</td>
<td>2 pm</td>
<td>Natural Language Processing</td>
</tr>
<tr>
<td>Wednesday</td>
<td>7 pm</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>Friday</td>
<td>9 am</td>
<td>Education</td>
</tr>
<tr>
<td>Friday</td>
<td>10 am</td>
<td>Phenotype Development and Evaluation</td>
</tr>
<tr>
<td>Friday</td>
<td>11 pm</td>
<td>China Chapter</td>
</tr>
<tr>
<td>Monday</td>
<td>10 am</td>
<td>Healthcare Systems Interest Group (formerly EHR WG)</td>
</tr>
<tr>
<td>Monday</td>
<td>10 am</td>
<td>GIS-Geographic Information System</td>
</tr>
<tr>
<td>Monday</td>
<td>2 pm</td>
<td>FHIR and OMOP – Terminologies Subgroup (ZOOM)</td>
</tr>
</tbody>
</table>

www.ohdsi.org/upcoming-working-group-calls
Upcoming Workgroup Calls

<table>
<thead>
<tr>
<th>Date</th>
<th>Time (ET)</th>
<th>Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>12 pm</td>
<td>Common Data Model – Vocabulary Subgroup</td>
</tr>
<tr>
<td>Tuesday</td>
<td>2 pm</td>
<td>Health Equity</td>
</tr>
<tr>
<td>Wednesday</td>
<td>2 pm</td>
<td>Natural Language Processing</td>
</tr>
<tr>
<td>Wednesday</td>
<td>7 pm</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>Friday</td>
<td>9 am</td>
<td>Education</td>
</tr>
<tr>
<td>Friday</td>
<td>10 am</td>
<td>Phenotype Development and Evaluation</td>
</tr>
<tr>
<td>Friday</td>
<td>11 pm</td>
<td>China Chapter</td>
</tr>
<tr>
<td>Monday</td>
<td>10 am</td>
<td>Healthcare Systems Interest Group (formerly EHR WG)</td>
</tr>
<tr>
<td>Monday</td>
<td>10 am</td>
<td>GIS-Geographic Information System</td>
</tr>
<tr>
<td>Monday</td>
<td>2 pm</td>
<td>FHIR and OMOP – Terminologies Subgroup (ZOOM)</td>
</tr>
</tbody>
</table>

For more information, visit www.ohdsi.org/upcoming-working-group-calls
Healthcare Systems Interest Group

formerly the Electronic Health Record Working Group

Draft objectives:
- To provide support for transforming source EHR data to the CDM
- Support healthcare systems with building the business case for the CDM
- Provide value to healthcare systems beyond participating in OHDSI network studies
- To help each other and learn from experience

www.ohdsi.org/upcoming-working-group-calls
Welcome to OHDSI!

The Observational Health Data Sciences and Informatics (OHDSI) program is a multi-stakeholder, interdisciplinary collaborative to bring out the value of health data through large-scale analytics. All our solutions are open-source.

OHDSI has established an international network of researchers and observational health.

2021 OHDSI Symposium

The 2021 OHDSI Global Symposium featured plenary presentations on OHDSI’s Impact on the COVID-19 Pandemic, as well as on the Journey to Reliable Evidence. The main days included the State of the Community Presentation, the Collaborator Showcase, and a memorable Closing Ceremony that focused on OHDSI’s work through the perspective of a patient.

5. Select the workgroups you want to join (you can refer to the WIKI for work group objectives www.ohdsi.org/web/wiki/doku.php?id=projects:overview)

- HTA
- Clinical Trials
- Common Data Model
- Data Quality Dashboard Development
- Early-stage Researchers
- Education Work Group
- Electronic Health Record (EHR) ETL
- Geographic Information System (GIS)
- HADES Health Analytics Data-to-Evidence Suite
- Health Equity
- Latin America
- Medical Devices
- Natural Language Processing
- OHDSI APAC
- OHDSI APAC Steering Committee
- OHDSI Steering Committee
- Oncology
- Patient-Generated Health Data
- Pharmacovigilance Evidence Investigation
- Phenotype Development and Evaluation
- Population-Level Effect Estimation / Patient-Level Prediction
- Psychiatry
- Registry (formerly ARIADNE)
- Surgery and Perioperative Medicine
- Vaccine Safety
- Vaccine Vocabulary
- Women of OHDSI

6. Select the chapter(s) you want to join

- Africa
- Australia
- China
- Europe
- Japan
- Korea
- Singapore
- Taiwan

7. Select the studies you want to join

- HERA-Health Equity Research Assessment
- PDXNBIH for Prostate Cancer (study-in-those ended)
- SCIURA (SARS-CoV-2 Large-scale Longitudinal Analyses)

Get Access To Different Teams/WGs/Chapters
Get Access To Different Teams/WGs/Chapters

5. Select the workgroups you want to join (you can refer to the WIKI for work group objectives www.ohdsi.org/web/wiki/doku.php?id=projects:overview)

- [] XTLAS
- [] Clinical Trials
- [] Common Data Model
- [] Data Quality Dashboard Development
- [] Early-stage Researchers
- [] Education Work Group
- [] Electronic Health Record (EHR) ETL
- [] Geographic Information System (GIS)
- [] HADES Health Analytics Data-to-Evidence Suite
- [] Health Equity
- [] Latin America
- [] Medical Devices
- [] Natural Language Processing
- [] OHDSI APAC
- [] OHDSI APAC Steering Committee
- [] OHDSI Steering Committee
- [] Oncology
- [] Patient-Generated Health Data
- [] Pharmacovigilance Evidence Investigation

6. Select the chapter(s) you want to join

- [] Africa
- [] Australia
- [] China
- [] Europe
- [] Japan
- [] Korea
- [] Singapore
- [] Taiwan

7. Select the studies you want to join

- [] HEA-Health Equity Analysis
- [] PIONEER for Prostate Cancer (study ended)
- [] SCIYLA (SARS-CoV-2 large-scale longitudinal Analysis)
Register For 2022 OHDSI Europe Symposium

EUROPEAN OHDSI SYMPOSIUM
Symposium: June 24th
Workshops: 25-26th

“All aboard!”
New Date!!

We’ll meet again for one journey ahead

www.ohdsi-europe.org/symposium-2022
#1: The 2021 Global Symposium

The 2021 Global Symposium featured plenary presentations on both OHDSI’s impact on the COVID-19 Pandemic, as well as on the Journey to Reliable Evidence. The main days included the State of the Community Presentation, the Collaboration Showcase, and a memorable Closing Ceremony that focused on OHDSI’s work through the perspective of a patient.

#2: Vaccine Surveillance Methods Research

Daniel Prieto-Alhambra, Professor of Pharmacology at the University of Oxford

Methodological research on vaccine safety methods is now more important than ever before. We need to make sure that the research we do is reliable, and to avoid false positive and negative findings.

The OHDSI community collaborated on methods research on Vaccine Surveillance throughout 2021, especially within our EUMAEUS (Evaluating Use of Methods for Adverse Event Under Surveillance) Workgroup. The team provided a presentation on this work over the summer, and had its first published study shared in Frontiers of Pharmacology recently.

#3: The Journey Newsletter (A Look Back On 2021)

Thank you to everybody who joined the journey with OHDSI in 2021 and helped our community take critical steps in our mission of empowering a community to collaboratively generate the evidence that promotes better health decisions and better care. Join us as we reflect on 12 highlights from the last 12 months before we turn our full attention on the possibilities of 2022!

Our community is excited to get back to work in 2022. We will resume our weekly Tuesday community calls on January 11 (11 am ET), so look for a calendar invite and #JoinTheJourney.

#4: The Latest Edition of “The Journey” Newsletter

#5: CDM v5.4 Is Released

The CDM v5.4 is released.

Thanks to the invaluable contributions of Clair Backler and the Common Data Model workgroup, the OHDSI community released v5.4 of the OMOP Common Data Model. The OMOP CDM is an open community data standard, designed to standardize the structure and content of observational data and to enable efficient analyses that can produce reliable evidence.

You can expect to hear much more about the latest version of the CDM in the new year, including workshops and other educational opportunities to learn how to best take advantage of OMOP in your research.

#6: The LEGEND Initiative

LEGEND (Large-scale Evidence Generation and Evaluation Across a Network of Databases) principles have been applied to studying the efficacy of treatments for depression, hypertension, and COVID-19, and are being applied to Type 2 diabetes. The clinical impact of LEGEND has already been observed, with important evidence that promotes better health decisions published in Lancet, JAMA Internal Medicine, and Hypertension.

The LEGEND team shared a presentation during an October community call that highlighted key aspects of the study, work that has been published, and announced the efforts around studying Type 2 diabetes.

#7: CDM v5.4 Release/Brief Tutorial

WATCH: CDM v5.4 Release/Brief Tutorial

#8: Watch: The CDM v5.4 Release/Brief Tutorial

#9: The LEGEND Initiative

WATCH: The LEGEND Presentation

#JoinTheJourney
Openings!

Associate Director, Observational Health Data Analytics

Location: Titusville, New Jersey; Raritan, New Jersey; Horsham, Pennsylvania; United States
Category: R&D
Req ID: 2105992960W

Get future jobs matching this search. Login or Register.

Job Description

Janssen Research & Development, L.L.C., a division of Johnson & Johnson's Family of Companies is recruiting for an Associate Director, Observational Health Data Analytics. The preferred position location includes Horsham, PA; Titusville, NJ; or Raritan, NJ. Remote work options in the United States may be considered on a case-by-case basis and if approved by the Company.

This position is a member of the Observational Health Data Analytics (OHDA) team. OHDA’s mission is to improve the lives of individuals and quality of healthcare by efficiently generating real-world evidence from the world’s observational health data, transparently disseminating evidence-based insights to real-world decision-makers, and objectively advancing the science and technology behind reliable, reproducible real-world analytics.
Openings!

About the Opportunity:

The Bouvé College of Health Sciences and The Roux Institute at Northeastern University seek candidates for **two tenure-track Assistant Professor positions** in the emerging area of health/healthcare data science. The successful candidate will have primary responsibility for working with the OHDSI Center at the Roux Institute (https://roux.northeastern.edu/ohdsi), focusing on education, research and community support of the global Open Source OHDSI initiative (http://ohdsi.org).

Research areas of interest should encompass approaches for maximizing the value of health data for evidence generation through large-scale analytics and may include artificial intelligence (AI), machine learning (ML), computer and data sciences, digital health, life sciences, and medicine. Example: Methods that strengthen the ability to confidently draw causal inferences from comparative effectiveness research on observational healthcare data.

Other examples include real-world evidence data standardization, clinical/micro surveillance, comparative effectiveness research, personalized risk prediction and prevention, learning healthcare systems, big data, and applications of health or bio-informatics.

Aspiring candidates may be developing methods or applications that use computational modeling and large datasets to enhance our understanding of health from diagnosis, therapeutics, prevention, and health outcomes. We are also interested in efforts to understand and reduce health disparities among marginalized populations.

Our tenure and promotion process values collaborative research and team work. Hires will be mentored for success, with mentoring teams and group guidance. In addition, a strong and effective faculty development strategy is part of the Northeastern institutional mission. The ADVANCE Office of Faculty Development office works in conjunction with the Office of Research Development (ORD), the Office of Institutional Diversity and Inclusion (OIDI), the Center for Advancing Teaching and Learning Through Research (CATLR), and University Decision Support (UDS) to provide programs and trainings to further develop and support a thriving faculty.

At Northeastern University, we embrace a culture of respect, where each person is valued for their contribution and is treated fairly. We oppose all forms of racism. We support a culture that does not tolerate any form of discrimination and where each person may belong. We strive to have a diverse membership, one where each person is trained and mentored to promote their success.

Assistant Professor

Job no: 508405
Work type: Faculty Full-time (Tenure/Tenure Track)
Location: Boston Main Campus, Portland, ME Campus
Categories: Bouvé College of Health Sciences

Observational Health Data Sciences and Informatics Postdoctoral Fellow

Job no: 508708
Position type: Staff
Location: Portland, ME Campus
Division/Equivalent: DIV53 - Roux Institute
School/Unit: 111240 - Roux Institute-Research
Categories: Regional Campuses

For more information, please contact **Brianne Olivieri-Mui**, Assistant Professor, Department of Health Sciences: **B.mui@northeastern.edu**
#OHDSISocialShowcase This Week

Cohort Incidence

Robust Incidence Rates for the Common Data Model in R

Authors: Christopher Knoll, Anthony Sena

METHODS

1. Define target and outcome cohorts in an explicit manner.
2. Time-at-risk is defined by specifying the offsets from the cohort entry and exit.
3. A close window is truncated from the end of the outcome interval to exclude time at risk from incidence rate calculation.
4. Subgroups can be used to isolate incidence rate calculations to specific sub-populations.
5. Incidence rate = count / time-at-risk - (exclude time) / Incidence Proportion = distinct subjects with cases / distinct subjects with at least 1 day at risk.

RESOURCES

- Source code is open-source and available at Github.
- A standardized object model that can be merged to the OMOP system.
- A standard results schema to persist results.
- Test cases to verify integrity of methods.

CohortIncidence is a new OHDSI R package and standardized framework for characterizing Incidence Rates at scale.

CohortIncidence: A Standardized Framework for Characterizing Incidence Using OMOP Common Data Model and OHDSI tools

Authors: Christopher Knoll, Anthony Sena

Example Use-case:

A single person with multiple exposures and multiple outcomes:

- **Time at Risk**
- **Close window**
- **Exclude time**

Step 1: Derive time-at-risk episodes (from target cohort) and clean windows (from outcome cohort).

Step 2: Collapse time-at-risk and clean windows.

Step 3: Exclude clean window from time-at-risk.

Step 4: Calculate incidence rate (or proportion) from remaining time at risk and cases.

- Christopher Knoll, Anthony Sena

CohortIncidence

<table>
<thead>
<tr>
<th>Target</th>
<th>Outcome</th>
<th>TBK</th>
<th>Subgroup</th>
<th>Time</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure 1</td>
<td>Outcome 1</td>
<td>SoloED</td>
<td>Age > 65</td>
<td>87.2</td>
<td>22.4</td>
</tr>
<tr>
<td>Exposure 1</td>
<td>Outcome 2</td>
<td>SoloED</td>
<td>Age > 65</td>
<td>71.4</td>
<td>101.4</td>
</tr>
<tr>
<td>Exposure 1</td>
<td>Outcome 3</td>
<td>SoloED</td>
<td>Age > 65</td>
<td>87.2</td>
<td>22.4</td>
</tr>
<tr>
<td>Exposure 1</td>
<td>Outcome 4</td>
<td>SoloED</td>
<td>Age > 65</td>
<td>71.4</td>
<td>101.4</td>
</tr>
<tr>
<td>Exposure 1</td>
<td>Outcome 5</td>
<td>SoloED</td>
<td>Age > 65</td>
<td>87.2</td>
<td>22.4</td>
</tr>
<tr>
<td>Exposure 1</td>
<td>Outcome 6</td>
<td>SoloED</td>
<td>Age > 65</td>
<td>71.4</td>
<td>101.4</td>
</tr>
</tbody>
</table>
Beyond Clinical: Integrating Research Assay Data into the Observational Health Data Sciences and Informatics Common Data Model (OHDSI CDM) through the Surgical Critical Care Initiative (SC2i)

Authors: Chandra Almond (presenter), William Patino, Ravi Sanka, Seth Schobel, Andrew MacKelfresh, Allan Kirk, Eric A. Elster
Comparing Data Quality Dashboard results from two ETL iterations:
three new utilities.

Elena G. Lara, Maxim Moinat

The Data Quality Dashboard (DQD) has been widely used to evaluate the quality of an OMOP CDM data set resulting from an ETL (extract, transform, load) process. In practice, during the conversion to the OMOP CDM we perform several ETL iterations. However, interpreting the differences in quality is not always straightforward.

We developed three new utilities as part of mapping of the UK Biobank (UKB) data under the European Health Data Evidence Network (EHEDN) COVID19 rapid data partner call and in collaboration with University College London.

1 Thresholds editing

As part of the ETL iterations, we needed to change the fail-thresholds of individual checks. We created a separate table to list the changed thresholds in a user-friendly way. Our utility script takes this new table to produce a customized thresholds file accepted by the default DQD scripts.

References:

Figure 1: Bar plot for the mapping coverage in an ETL in light blue, the percentage of unique terms mapped to a standard OMOP concept in dark blue, the percentage of records mapped to a standard OMOP concept in light red. This ETL iteration achieved a high coverage throughout all domains and units (Figure 1) in terms of records mapped to standard concepts. The number of unique terms mapped was low for measurement and observation units (1.82% and 1.00%) and for measurement (1.84-21).

Figure 2: This visualization script selects the checks for which the percentage of records that satisfy said check has changed between ETL iterations. Here, the percentage of records satisfying the checks had mostly improved (Figure 2). As an example, there is an outlier (top left corner) that prompted us to investigate and update the ETL accordingly. On the other hand, we improved the standard record completeness in the observation table to be above 80%. Both visualizations are produced directly from DQD output.
Empirical Assessment of Alternative Methods for Identifying Seasonality in Observational Healthcare Data

Authors: Anthony Molinaro, Frank DeFalco

THURSDAY

Empirical Assessment of Alternative Methods for Identifying Seasonality in Observational Healthcare Data

Methods for detecting seasonality in time series produce inconsistent results in observational healthcare data.

Results
- Using the 8 aforementioned methods for detecting seasonality, we sampled 85,177 time series from Phorest's dataset in the OHDSI CDM format at three levels of significance. With more than 100,000 evaluations, we discovered substantial discord across these methods. The inconsistent results strongly suggest that these methods are not interchangeable and seasonality classification is highly dependent on the method chosen.

Concordance across all datasets

Anthony Molinaro, Frank DeFalco

@OHDSI www.ohdsi.org

#OHDSISocialShowcase This Week

#OHDSISocialShowcase This Week

Empirical Assessment of Alternative Methods for Identifying Seasonality in Observational Healthcare Data

Authors: Anthony Molinaro, Frank DeFalco

THURSDAY

Empirical Assessment of Alternative Methods for Identifying Seasonality in Observational Healthcare Data

Methods for detecting seasonality in time series produce inconsistent results in observational healthcare data.

Results
- Using the 8 aforementioned methods for detecting seasonality, we sampled 85,177 time series from Phorest's dataset in the OHDSI CDM format at three levels of significance. With more than 100,000 evaluations, we discovered substantial discord across these methods. The inconsistent results strongly suggest that these methods are not interchangeable and seasonality classification is highly dependent on the method chosen.

Concordance across all datasets

Anthony Molinaro, Frank DeFalco

@OHDSI www.ohdsi.org

#OHDSISocialShowcase This Week
FRIDAY

#OHDSISocialShowcase This Week

ATLAS with a BigQuery backend running Execution Engine - a Software demo

Authors: Jose Posada, Priya Desai, Konstantin Yaroshovets, Gregory Klebanov
Where Are We Going?

Any other announcements of upcoming work, events, deadlines, etc?
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
Welcome To OHDSI Newcomers

Are there any people new to the OHDSI community call who would like to introduce themselves?

Please raise your hand, and we will call on three people.