Welcome to Phenotype Phebruary: Week 2 update

Patrick Ryan
Welcome to Phenotype Phebruary!

Patrick_Ryan

Team:

It's finally arrived. That wonderful month when you can put all your troubles aside, cast off those New Year's resolutions you've already failed at, enjoy the freezing cold Northeastern US weather or the Australian heat, and JUST FOCUS ON PHENOTYPING!

28 days, 28 phenotypes. That's our target for OHDSI in 2022. Are you ready?

For those who missed it, our OHDSI community call recording is here where I tried to provide a little background and motivation for this big community push together.

But to summarize it here: phenotypes are the foundational element in almost every real-world analysis we do in OHDSI, they are the natural bridge between our standardized data (the OMOP CDM) and our standardized analytics (such as ATLAS and the HADES packages). The reliability of the evidence we generate often lives and dies by the quality of the phenotypes that we use as inputs of indications, exposures, outcomes, and other features that we put into our analyses. And yet, across the broader research enterprise, the science of phenotype development and evaluation is relatively immature. The world doesn’t yet have consensus best practices to design phenotypes, doesn’t have agreed standardized tools to build phenotypes, doesn’t have consistent, reproducible methods to evaluate phenotypes. Our phenotypes are fraught with substantial measurement error; we know we likely have suboptimal sensitivity, specificity, and positive predictive value, yet we don’t consistently estimate the measurement error and even more rarely integrate measurement error into our analyses. No large-scale regression or fancy deep learning model is sufficient to solidify the house of cards that our analyses rest upon if we have suspect phenotypes.
Phenotype Phebruary Daily Updates

“Phenotype Phebruary” is a community-wide initiative to both develop and evaluate phenotypes for health outcomes that could be investigated by the community. Patrick Ryan introduced this initiative in both a slides presentation and a forum post, and each of the conversations around the ‘28 phenotypes for 28 days’ are being held within the OHDSI forums.

This page will provide direct links to each forum post, which is where conversations around each specific phenotype should be held.

Please be active in these discussions. What ways can you contribute?

1. Join the conversations

- Discussions will be here on forums.ohdsi.org
- Each day will be a new thread
 - Ex: Look for: “Phenotype Phebruary Day 1 – Type 2 diabetes mellitus”
- Explore the definitions and review the results provided
- Reply with your thoughts, reflections, insights and question

https://ohdsi.org/phenotype-phebruary/
How can you get involved in Phenotype Phebruary?

• Join the conversation!
 – Discussions will be on forums.ohdsi.org
 – Each day will be a new thread, all threads available via: https://ohdsi.org/phenotype-phebruary/
 – Explore the definitions and review the results provided
 – Reply with your thoughts, reflections, insights and questions

• Evaluate the cohort definitions in your data!
 – Execute cohort definitions and CohortDiagnostics in your CDM
 – Share insights you learn from your data on the forums
 – Share results to compile across the network on data.ohdsi.org

• Lead a discussion!
 – 28 days, 28 phenotypes, lots of opportunities to lead
 – I have kicked off the discussion for the first 7 days, but if others would like to similarly lead a phenotype development and evaluation activity, contact ryan@ohdsi.org or chat with me in OHDSI MSTeams, tell me your desired phenotype target and calendar date you want to commit to
Phenotype Phebruary resources

• https://atlas-phenotype.ohdsi.org/
 – ATLAS instance for OHDSI Phenotype Development WG to share cohort definitions
 – Want to get read access to this ATLAS instance? Fill out form here: https://forms.gle/6fxcZFyufhL39pLj7

• https://data.ohdsi.org/phenotypePhebruary/
 – CohortDiagnostics instance that we’ll be results each day from Phenotype Phebruary evaluations

• https://github.com/ohdsi-studies/PhenotypePhebruary
 – Git repository where we can share code to run CohortDiagnostics

• Phenotype Development and Evaluation WG
Phenotype Phebruary

February 2022: Every day, a new phenotype will be developed and evaluated following OHDSI best practices

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Neutropenia</td>
<td>8 Kidney Stones</td>
<td>9 Delirium</td>
<td>10 Systemic lupus erythematosus</td>
<td>11 Suicidal thoughts</td>
<td>12 Parkinson’s Disease</td>
<td>13 Attention deficit hyperactivity disorder</td>
</tr>
<tr>
<td>14 Hypertension Gowtham Rao</td>
<td>15 Acute myocardial infarction Gowtham Rao</td>
<td>16 Heart failure</td>
<td>17 Cardiomyopathy</td>
<td>18 Multiple sclerosis</td>
<td>19 Triple Negative Breast cancer</td>
<td>20 Pulmonary Hypertension</td>
</tr>
<tr>
<td>28 Developmental disabilities Claudia Pulgarin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What has been your phavorite Phenotype Phebruary phun phact so phar?

Top

No responses received yet. They will appear here...
Phenotype Phebruary Day 8 - Kidney Stones

Patrick Ryan

Team:

For those who missed any of the fun in Phenotype Phebruary Week 1, here's a page with a running inventory of the phenotype conversations we've started: Phenotype Phebruary Daily Updates - OHDSI. As we embark on Week 2 of Phenotype Phebruary, I decided to select a phenotype that was highly voted on by our community that was more surprising to me. I don't know why kidney stones were of such interest to so many of you, but the community has spoken and I like the challenge of coming up with a fun and compelling story to promote phenotyping, so here goes...

Clinical description:

Kidney stone disease occurs when a calculus develops in the urinary tract, often starting in the kidney and passing through the ureters, bladder and urethra. This phenomenon, also known as nephrolithiasis or urolithiasis, can be asymptomatic if the kidney stones are small enough. However, the size, shape and composition of calculi can vary substantially, and larger stones can create obstructions at any stage across the urinary tract. Such blockages can cause acute pain, typically presenting in the lower back or abdomen, and may also cause painful urination or hematuria. Kidney stones are typically diagnosed by symptoms, urine tests and imaging. Treatment often is based on patient symptoms. Pain management and hydration can allow some stones to pass spontaneously. Drugs to expedite passage, such as alpha blockers and calcium channel blockers, can be considered. Shock wave lithotripsy can be used in some circumstances to break stone into smaller pieces. Surgical removal via nephrolithotomy or ureteroscopy may be indicated depending on stone size and patient comorbidities and pain intensity.

Phenotype development:

One of the surprising statistics that I read across many different references was the notion that half of the people who have had a kidney stone will have another 10 years. This number was thrown around in many publications, and yet most cited the same seminal paper: Urinary et al, "The first kidney stone", from BMJ in 1989. That paper provides a review of past studies that examined recurrence of kidney stones, providing their Table 1 compilation of the identified studies:

<table>
<thead>
<tr>
<th>Study (Reference)</th>
<th>1 Year</th>
<th>Cumulative Recurrence Rate %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 Years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Men</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phenotype Phebruary Day 9 - Delirium [From Azza Shoaibi]

Gowtham Rao

Posting on behalf of @AzzaShoaibi

(the forum does not allow new users to post images or links)

Team:

Day 9 of Phenotype Phebruary. I happen to be the bravest to pick a date for my phenotype that ends

Patrick amazing dense posts and start an era of "OK" Phenotype Phebruary posts. I hope that you will still find my input useful.

Today, I'll try to start a conversation of the phenotype that came to us during phenotype development and evaluation workgroup office hours. Our friend Aize wanted to know how can we phenotype delirium in observational data. Together we started the process of 1. Decide on the clinical description of delirium 2. Accumulate prior knowledge on the phenotype 3. Select initial concept set (codes) using phenoe and Atlas. Those 3 steps took place during last week office hour. I then took the action of completing the next steps of 4. Build one or more cohort definition using atlas 5. Evaluate and iterate on the definition using cohort diagnostics. I will summarize my learnings today to Aize and you all, hoping that this will start a useful discussion.

Clinical description:

My favorite paper that summarized what delirium is and what we know about it is here: Burns, A., O'Callaghan, A., & Byrne, J. (2004). Delirium. Journal of Neurology, Neurosurgery & Psychiatry, 75(3), 362-367, but here is a quick overview of some points that I found relevant to the phenotyping exercise.

Delirium, or a confused mental state, occurs suddenly. A person has a change in mental status and acts disoriented and distracted. Delirium is more common in older adults, especially those with dementia, and people who need hospitalization. Prompt treatment is essential in helping a person with delirium recover. Delirium happens when a person has sudden confusion or a sudden change in mental status. The person may have trouble paying attention or thinking clearly. They may act disoriented or distracted. Delirium is more severe than having a "senior moment" — the minor problems people have with memory and understanding as they get older. It requires treatment and often hospitalization. Delirium is not a disease. It's a changed mental state. Because delirium is temporary, it's hard to know exactly how many people develop it. Researchers estimate that hospital delirium affects 15% to 50% of people. Below is the exact clinical criteria for delirium by DSM-IV to guide our way.
Phenotype Phebruary Day 10 - Systemic Lupus Erythematosus

In this edition to Phenotype Phebruary, I'd like to discuss the work @Jill_Hardin and I did for developing phenotype algorithms in the immunology space for systemic lupus erythematosus.

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown origin. Clinical manifestations include fatigue, arthralgia, and involvement of nearly all organ systems, particularly cardiac and renal. A review by Stoppan and Petri of research on multi-country incidence rate estimates found the incidence rate of SLE to be between 1-5 cases per 100,000 person-years (PY).

As @Patrick_Ryan has provided an excellent review of the details of the phenotype algorithm development process, I'll build on that to demonstrate how we used the process for our cohort definitions. We first conducted a literature search for phenotype algorithms for SLE. From those resources we determined the codes used in prior studies. We used those as a starting point and entered those into the wonderful PHOEBE tool developed by @acontroplet. The final concept set was:

<table>
<thead>
<tr>
<th>Concept</th>
<th>Concept Code</th>
<th>Concept Name</th>
<th>Source</th>
<th>Standard Concept Code</th>
<th>Preferred</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>652325</td>
<td>652325</td>
<td>SLE systemic lupus erythematosus</td>
<td>Condition</td>
<td>Standard</td>
<td>Preferred</td>
<td></td>
</tr>
<tr>
<td>652305</td>
<td>652305</td>
<td>SLE systemic lupus erythematosus</td>
<td>Condition</td>
<td>Standard</td>
<td>Preferred</td>
<td></td>
</tr>
<tr>
<td>652327</td>
<td>652327</td>
<td>Systemic lupus erythematosus</td>
<td>Condition</td>
<td>Standard</td>
<td>Preferred</td>
<td></td>
</tr>
</tbody>
</table>

We then began building our cohort definitions. We were concerned about possible index date misclassification as prior research had indicated that there may be a long period between first symptoms and first diagnosis. We used the spectacular Cohort Diagnostics tool (thank you @Covratm_Rao !) to examine the conditions and drugs in the time prior to an initial diagnosis of SLE and found in the IBM Commercial Claims and Encounters dataset.
Phenotype Phebruary Day 11 - Suicide attempts

General

Gowtham Rao

Azza Shoabi

Hi team, it’s me again @AzzaShoabi using @Gowtham_Rao account. This is day 11 of Phenotype Phebruary and I would like to start a discussion about suicide attempt. This is a phenotype that I worked on with my dear friend @conovermitch. In today’s post I will demonstrate:

1. how important it is to learn from what others already did (literature) as a primary input into the phenotyping process
2. how it is possible to incorporate other’s findings into OHDSI phenotyping practices and tools
3. How we can but not necessarily should use “source codes” when developing phenotypes using OHDSI tools.

Suicide attempts/self-harm (clinical description):
One of the biggest challenges when working on this phenotype is agreeing on the target/clinical description. Suicide is a major public health concern and there is a big debate on what is the right target for studies looking at suicide as a target (study population) or an outcome. There is multiple overlapping but different constructs/terms like: Self-harm, suicide attempt, suicide ideation/thoughts, suicidality overall, suicidal behavior.
The table below from INTRODUCTION - Screening for Suicide Risk in Primary Care - NCBI Bookshelf provides a nice summary of the clinical definitions of these terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suicide</td>
<td>Death caused by self-directed injurious behavior with any intent to die as a result of the behavior.</td>
</tr>
<tr>
<td>Suicide attempt</td>
<td>A non-fatal self-directed potentially injurious behavior with any intent to die as a result of the behavior. A suicide attempt may or may not result in injury.</td>
</tr>
<tr>
<td>Suicidal self-directed violence</td>
<td>Behavior that is self-directed and deliberately results in injury or the potential for injury to oneself. There is evidence, whether implicit or explicit, of suicidal intent. This encompasses suicide deaths and suicide attempts.</td>
</tr>
<tr>
<td>Other suicidal behavior and preparatory acts</td>
<td>Acts or preparation toward making a suicide attempt, but before potential for harm has begun. This can include anything beyond a verbalization or thought, such as assembling a method (e.g., buying a gun, collecting pills) or preparing for one’s death by suicide (e.g., writing a suicide note, giving things away). Referred to as “aborted suicide attempts” by the American Psychiatric Association.</td>
</tr>
<tr>
<td>Suicidal ideation</td>
<td>Passive thoughts about wanting to be dead or active thoughts about killing oneself, not necessarily coupled with an intent to do so.</td>
</tr>
</tbody>
</table>
Phenotype Phebruary Day 12 - Parkinson’s disease & parkinsonism

It's been a while since we've seen allanwu — their last post was 5 months ago.

allanwu

I'd like to introduce thoughts from our joint team (at UCLA and Northwestern University) on Parkinson's disease and parkinsonism. Thanks to @Patrick_Ryan for encouragement to participate even as we have yet to setup our own OMOP-CDM instance.

Goal: to develop and evaluate algorithms (and impact of criteria used within them) that assess incidence and prevalence of
- Parkinson's disease (PD) and
- neurodegenerative parkinsonism disorders (PD included)

Clinical description

Parkinson's disease (PD) is a neurodegenerative disease that has been estimated to be increasing in prevalence based on large scale epidemiologic work. It is the most frequent form of neurodegenerative parkinsonism, itself a subset of parkinsonism syndromes. More details below.

PD is considered the condition when there is specific degeneration of the substantia nigra dopaminergic (DA) neurons over time producing the disease. It is estimated that well over 50% of DA cells will degenerate before clinical symptoms appear. This is the classic and core definition, however, increasingly there is appreciation of that PD itself is a multisystem disorder with involvement of other neurotransmitters and other systems within and not within the nervous system (often noted as non-motor symptoms – constipation, cognitive impairment, sleep disorders, autonomic dysfunction, depression, anxiety etc).

PD is the most common form of neurodegenerative parkinsonism (60-85%).

Neurodegenerative parkinsonisms (other than PD) are defined by having parkinsonism plus other neurologic systems that are affected by degeneration besides the specific PD degeneration described above. There will be described in more detail below — and include progressive supranuclear palsy (PSP), multiple systems atrophy (MSA), corticobasal degeneration (CBD) and others. Frequently, patients with neurodegenerative parkinsonism may be diagnosed with PD early on before neurodegenerative features become sufficiently prominent for clinical diagnosis over time. If patients have a clear diagnosis of PSP or MSA (for example), those are not considered PD, but are within neurodegenerative parkinsonism.
Today, while many in the US are preparing for their Super Bowl football/commercial viewing parties, I'd like to discuss phenotyping Attention Deficit Hyperactivity Disorder (ADHD). This is work that several colleagues (@ericavoss @weave17 @lilt_hardin @conovermitch) and I conducted over the past couple years that yielded a bunch of lessons learned the hard way. But the experience gave us insights to some complementary recommended practices that I’ve carried forward in my own research, so I thought I’d walk through the development process to show the pitfalls and ways to overcome them.

Clinical description:

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by patterns of inattention or impulsive behaviors that interfere with functions. ADHD can be classified by the most common symptoms, be it ‘predominantly inattentive’ presentation - where patients may struggle to organize or complete tasks, follow directions, or remember details of daily activities- or ‘predominantly hyperactive-impulsive’ presentation - where patients are constantly moving around or talking or interrupting when not appropriate. ADHD is most commonly diagnosed in childhood (though can occur with onset in adults), through physician examination and evaluation of ADHD symptoms over time and its impact in social settings (and ruling out alternative diagnosis from other mental health disorders or environmental factors). Management of ADHD may involve behavioral therapy or pharmacologic treatment (including stimulants such as methylphenidate, amphetamine, lisdexamfetamine, and non-stimulants such as atomoxetine and guanfacine).

Phenotype development:

Let’s follow some of the practices we’ve discussed on prior threads. We’ll start with PHOEBE to find our starting point in the OHDSI vocabulary:
Phenotype February Day 14 - Hypertension

Gowtham Rao

On Valentine's week - let's start the cardiovascular phenotypes. This week - we will work on:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 14 | Hypertension
Gowtham Rao |
| 15 | Acute myocardial infarction
Gowtham Rao |
| 16 | Heart failure
Gowtham Rao |
| 17 | Cardiomyopathy
Gowtham Rao |

Happy Valentine's day @AzzaShoaibi

I decided to change the pattern of how we have been posting on the forums based on the feedback @
the OHDSI Phenotype Development and Evaluation workgroup (please join here @). The feedback was
- this is intimidating, too long and I don't know if a new contributor can do this.

So - instead of one long one per day post, I am going to break it down into multiple posts per day -
hopefully this will make it easier to read.

I am going to try to use this cardiovascular week related posts to assert/explore some of the best
practice opinions that we have developed at the OHDSI Phenotype Development and Evaluation
workgroup with focus on all the steps that need to be done PRIOR to touching Atlas or creating code
sets + the importance of such pre work.
Phenotype Phebruary Day 15 - Acute Myocardial Infarction

Gowtham Rao

Part of the Valntines week

As described in the hypertension post I start with my notes - sources from medical text books

The phrase Acute Myocardial Infarction - is ambiguous and I read three related chapters in the text book and summarized them as my notes below

Chronic Stable Angina, Unstable Angina, Non ST Segment Elevation of Myocardial Infarction, ST Elevation Myocardial Infarction

Chronic Stable Angina:

Overview:
most common clinical manifestation of coronary artery disease (CAD) - imbalance between myocardial metabolic O2 demand vs supply commonly because of atherosclerotic coronary artery obstruction.

Presentation:
Associated with exertion or emotional upset
Relieved quickly by rest or nitroglycerin

Assessment:
History of established risk factors: Cigarette smoking, hypertension, hypercholesterolemia, diabetes, obesity

EKG - may be normal
What has been your phavorite Phenotype Phebruary phun phact so phar?

Top

2

I learned through the power of community-feedback from others in OHDSI improved my cohort algorithms

1

I commit to not look at codes before writing a clinical description! That clinical description is the most important first step for phenotyping clarify of the clinical idea/ description matters. ex. Any delirium (some that may be related to aging
Phenotype Phebruary

February 2022: Every day, a new phenotype will be developed and evaluated following OHDSI best practices

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Type 2 Diabetes Mellitus</td>
<td>Type 1 Diabetes Mellitus</td>
<td>Atrial Fibrillation</td>
<td>Multiple myeloma</td>
<td>Alzheimer’s disease</td>
<td>Hemorrhagic events</td>
<td></td>
</tr>
</tbody>
</table>

| 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| Neutropenia | Kidney Stones | Delirium Azza Shoaibi | Systemic lupus erythematosus Joel Swerdel | Suicidal thoughts Azza Shoaibi | Parkinson’s Disease Allan Wu | Attention deficit hyperactivity disorder |

| 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Hypertension | Acute myocardial infarction Gowtham Rao | Heart failure Gowtham Rao | Cardiomyopathy Gowtham Rao | Multiple sclerosis Azza Shoaibi | Triple Negative Breast cancer Adam Black | Pulmonary Hypertension Evan Minty |

| 21 | 22 | 23 | 24 | 25 | 26 | 27 |

| 28 | | | | | | |
| Developmental disabilities Claudia Pulgarin | | | | | | |

28 Developmental disabilities Claudia Pulgarin
How can you get involved in Phenotype Phebruary?

• Join the conversation!
 – Discussions will be on forums.ohdsi.org
 – Each day will be a new thread, all threads available via: https://ohdsi.org/phenotype-phebruary/
 – Explore the definitions and review the results provided
 – Reply with your thoughts, reflections, insights and questions

• Evaluate the cohort definitions in your data!
 – Execute cohort definitions and CohortDiagnostics in your CDM
 – Share insights you learn from your data on the forums
 – Share results to compile across the network on data.ohdsi.org

• Lead a discussion!
 – 28 days, 28 phenotypes, lots of opportunities to lead
 – I have kicked off the discussion for the first 7 days, but if others would like to similarly lead a phenotype development and evaluation activity, contact ryan@ohdsi.org or chat with me in OHDSI MSTeams, tell me your desired phenotype target and calendar date you want to commit to
Phenotype February Day 1 – Type 2 diabetes mellitus

Patrick_Ryan

Today, we'll be using OHDSI tools to develop and evaluate cohort definitions for the phenotype target of Type 2 diabetes mellitus (T2DM).

Clinical description:

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” is a tremendous resource to learn more about diabetes for those interested. It classifies diabetes into the following general categories:

1. Type 1 diabetes (due to autoimmune b-cell destruction, usually leading to absolute insulin deficiency, including latent autoimmune diabetes of adulthood)
2. Type 2 diabetes (due to a progressive loss of adequate b-cell insulin secretion frequently on the background of insulin resistance)
3. Specific types of diabetes due to other causes, e.g., monogenic diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young), diseases of the exocrine pancreas (such as cystic fibrosis and pancreatitis), and drug- or chemical-induced diabetes (such as with glucocorticoid use, in the treatment of HIV/AIDS, or after organ transplantation)
4. Gestational diabetes mellitus (diabetes diagnosed in the second or third trimester of pregnancy that was not clearly overt diabetes prior to gestation)

It provides objective diagnostic criteria based on readily-accessible laboratory measures used in routine practice. “Diabetes can be diagnosed based on plasma glucose criteria, either the fasting plasma glucose (FPG) value or the 2-h plasma glucose (2-h PG) value during a 75-g oral glucose tolerance test (OGTT), or A1C criteria”

The epidemiology and disease natural history of T2DM has been extensively characterized in the literature. Common symptoms of T2DM onset include thirst, frequent urination, weight loss. Common risk factors include age, obesity, hypertension and hyperlipidemia. Management of T2DM can include lifestyle modifications, including diet and exercise, as well as pharmacologic treatment (with notable drugs including metformin, Sulfonylureas, Sodium Glucose Co-Transporter 2 (SGLT2) inhibitors, GLP-1 receptor agonists (GLP1RA), Dipeptidyl peptidase-4 inhibitor (DPP4I), Thiazolidinediones, and insulin). Long-term complications associated with T2DM can include cardiovascular events (ischemic heart disease, stroke), diabetic retinopathy, kidney failure, and amputation. The incidence of T2DM has been increasing over time. Current prevalence estimates of...
Welcome everyone to Day 2 of Phenotype Phebruary! I hope you enjoyed reading the kick-off to the discussion of phenotyping Type 2 Diabetes Mellitus on Day 1, and encourage you to join that conversation. Meanwhile, here, I hope to stimulate another discussion, this one on Type 1 Diabetes Mellitus (T1DM).

Now admittedly, I wasn’t planning to consider T1DM as a phenotype to work through during the month, because I thought it might be too close in spirit to T2DM. However, the community spoke loudly in their voting, with 20 individuals asking to explore T1DM, putting it in the top 5 of desired targets, so here we are.

And since we did T2DM yesterday, I figured today’s a good opportunity stay in this related space, but highlight some different insights and observations that arise from going through the OHDSI phenotype development and evaluation process.

Clinical description:

As with T2DM, we can look to the American Diabetes Association (ADA)’ Standards of Medical Care in Diabetes to provide a helpful frame of reference for the disease. ADA classifies diabetes into the following general categories:

- Type 1 diabetes (due to autoimmune cell destruction, usually leading to absolute insulin deficiency, including latent autoimmune diabetes of adulthood)
- Type 2 diabetes (due to a progressive loss of adequate b-cell insulin secretion frequently on the background of insulin resistance)
- Specific types of diabetes due to other causes, e.g., monogenic diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young), diseases of the exocrine pancreas (such as cystic fibrosis and pancreatitis), and drug- or chemical-induced diabetes (such as with glucocorticoid use, in the treatment of HIV/AIDS, or after organ transplantation)
- Gestational diabetes mellitus (diabetes diagnosed in the second or third trimester of pregnancy that was not clearly overt diabetes prior to gestation)

Here, I find the ADA’s discussion about the evolving landscape of T1DM and T2DM quite informative:
Phenotype Phebruary Day 3 - Atrial Fibrillation

Today, I'd like to take a little side step from the problem of creating phenotypes de novo, and talk about how to try to implement a phenotype algorithm using OHDSI tools based on an existing description from some external material, just as a publication. I'll use the phenotype of Atrial Fibrillation to demonstrate some tips and tricks, but I hope you'll see that the steps I'll follow here are completely transportable to whatever phenotype you may want to be working on.

Clinical description:

Atrial fibrillation (AFib) is an abnormal heart rhythm, often with irregular beats in the atrial chamber. CDC has a nice animated gif to illustrate what this means: [Atrial Fibrillation](https://www.cdc.gov/afib/index.htm). Initial symptoms of AFib may include feeling of irregular heartbeat or palpitations, lightheadedness, fatigue, dyspnea, and chest pain. AFib is frequently comorbid with other cardiovascular conditions, such as hypertension, coronary artery disease, and pericarditis. Patients with AFib are at higher risk of cardiovascular complications, including heart failure and ischemic stroke. AFib is most commonly diagnosed with electrocardiogram, though echocardiogram can also be used to evaluate AFib and valvular defects. AFib can be classified as 'first detected', 'paroxysmal', 'persistent', 'longstanding persistent', and 'permanent' based on the frequency and duration of abnormal heartbeat episodes.

Common pharmacologic treatment may include beta blockers, calcium channel blockers, amiodarone, and anticoagulants (such as warfarin, heparin, or a direct oral anticoagulant (DOAC) such as apixaban, rivaroxaban, and dabigatran). Other treatments can include electrical cardioversion and catheter or surgical ablation. AFib is more common in men than women, and the risk of AFib increases with age.

Phenotype development:

AFib is a common target for investigation in observational databases, both as a disease that impacts future outcomes and also as an indication for various treatments that are regularly evaluated for comparative effectiveness and safety.

As a case in point, just PubMed "atrial fibrillation" AND ("claims" OR "electronic health records") and you'll see >1,000 articles! You'll find many recent observational studies in high-profile journals. Articles like Ray et al., "Association of Rivaroxaban vs Apixaban With Major Ischemic or Hemorrhagic Events in Patients With Atrial Fibrillation", in *JAMA* in Dec2021 (which seems like a nice target for an OHDSI replication, wink wink [tagelover]). Or Kim et al., "Machine Learning Methodologies for Prediction of
Welcome to Phenotype Phebruary Day 4! We’ve discuss phenotyping metabolic diseases (T2DM and T1DM) and cardiovascular disease (AFib), so let’s turn our attention to a different disease area that is a particularly active focus for many community collaborators - oncology. OHDSI’s Oncology workgroup has made good progress in thinking about advances in the OMOP CDM and OHDSI vocabularies to accommodate the study of cancers and their treatments. Another key opportunity, that I know @ogolozer is quite keen to lead within the Oncology WG, is developing phenotype algorithms for each cancer target, and evaluating those algorithms across a diverse array of databases that could potentially be used to generate evidence, including administrative claims, electronic health records, specialty oncology EHRs, and cancer registries. Phenotype Phebruary seems the perfect time to get community collaboration toward this objective, starting today with Multiple Myeloma.

Clinical description:

Multiple myeloma is a type of blood cancer that affects plasma cells. Malignant white blood cells develop in bone marrow, suppressing healthy plasma cells that produce antibodies against infection. Malignant plasma cells produce M protein, which can cause tumors, kidney damage, bone destruction and impaired immune function. They also cause decreased production of red blood cells and platelets, which can result in anemia and bleeding.

Multiple myeloma is diagnosed based on plasmacytoma identified on biopsy, >30% malignant plasma cells in bone marrow aspiration, elevated levels of M protein from protein electrophoresis in the blood or urine, osteolytic lesions observed on imaging, and IgG or IgA antibody levels in the blood. Additional diagnostics tests may include measurement of Beta2-microglobulin level. Management of multiple myeloma typically requires pharmacologic treatment with proteasome inhibitors (including bortezomib, carfilzomib, ixazomib), immunomodulatory drugs (like lenalidomide, pomalidomide, thalidomide), steroids (dexamethasone, prednisone), monoclonal antibodies (such as elotuzumab, daratumumab, isatuximab, belantamab), and chemotherapy (doxorubicin, melphalan, cyclophosphamide, bendamustine, vincristine). Autologous stem cell transplant may be considered for those eligible. Patients may also be treated with bisphosphonates to reduce risk of bone loss.

Multiple myeloma is more common in men than women, more common in Black or African American than whites, more common in older ages (with most cases occurring after 40 years old).
Phenotype Phebruary Day 5 - Alzheimer’s Disease

Patrck_Ryan

Team:

Day 5 of Phenotype Phebruary. Still lots of methodological topics to discuss and disease areas to investigate. Today, I’ll try to start a conversation of the phenotype that was most highly voted on across our community. Alzheimer’s disease.

Clinical description:

Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia (loss of cognitive functions interfering with daily activities), representing 60-80% of cases (according to Alzheimer’s Association). Initial symptoms of Alzheimer’s disease may be short-term memory loss and other difficulties associated with mild cognitive impairment, such as word-finding, visual/spatial issues, and general confusion. Diagnosis of Alzheimer’s disease may involve neurological exam, including brain MRI or CT scans, to identify other potential causes of dementia other than Alzheimer’s, and mental cognitive status tests. Drugs approved for use in Alzheimer’s disease include cholinesterase inhibitors (such as donepezil, galantamine, or rivastigmine) and memantine, which are primarily aimed at treating cognitive symptoms. In 2021, aducanumab was approved by US FDA on the basis of clinical trial data suggesting reduction of amyloid beta plaque. Alzheimer’s disease risk increases with age, with most cases detected after 65 years old. Prevalence of AD is higher in females than males, though that is attenuated by female longer life span. It is one of leading causes of death globally, and second-leading cause in high-income countries (WHO).

Phenotype development:

I’ve mentioned in prior posts that a valuable starting point for phenotype development can be the published literature, and I’ve shown how you - provided that a journal article supplied enough details - you can replicate their algorithms using OHDSI tools. But I want to take a digression here for a little rant: if observational researchers all need to develop phenotypes to conduct their analyses and should all review prior literature as part of our research process, then why is so hard to search for publications of observational research and extract out the phenotypes that were previously used? If phenotypes are so central to the integrity of our research, then as a research community, why do we accept short freetext descriptions of phenotypes in manuscripts, sometimes without list of codes and often without a complete specification of the logic that was used to implement them? And for those of us promoting increased transparency, when we try to add additional detail in supplemental materials, why do we often format it in ways that make it painful for others to re-use without extensive manual curation? When
Welcome to Phenotype Phebruary Day 6!

Up to this point, we've discussed phenotype targets that are generally considered chronic diseases (T2DM, T1DM, AFib, multiple myeloma, Alzheimer's). As such, our focus has been primarily on identifying cohort entry with the subposition that once a person enters the cohort, they remain in that health state until the end of their observation.

Today, I'd like to talk about creating a cohort definition that allows for a person to enter and exit the cohort multiple times. We'll use hemorrhagic events and bleeding-related hospitalizations as our example. This will subsume a couple of phenotypes high on the OHDSI wishlist: hemorrhagic stroke and gastrointestinal bleeding.

Our motivating use case: In our AFib discussion, we noted a recent paper by Ray et al., "Association of Rivaroxaban vs Warfarin With Major Ischemic or Hemorrhagic Events in Patients With Atrial Fibrillation," in JAMA in Dec 2021. In that study, the target and comparator populations were persons with AFib with DOAC exposure, so we should be clear how we could use our AFib cohort, intersect it with a new drug cohort, and identify the patients eligible to be analyzed. That was the easy part, now we'll tackle the trickier bit: finding the outcomes for those patients. In their publication, Ray et al. classify and define ischemic and hemorrhagic events, with ischemic strokes and systemic embolisms, and hemorrhagic events including hemorrhagic strokes and bleeding-related hospitalizations. Today, I'll just focus on that second aspect.

Clinical description:

I had fun looking for a clinical definition to report here without sounding stupid. Medlineplus gave me this: "Bleeding is the loss of blood." Google's healthbox provides defines bleeding (aka hemorrhage) as "the release of blood from a broken blood vessel, either inside or outside the body." Perhaps not terribly informative.

In part, its because it's an ill-specified phenotype target: hemorrhage can be the result from a broad constellation of injuries, can occur anywhere throughout the body, and can have consequences that vary from inconsequential/self-remedying to fatal. External bleeding is usually easy to detect (look for red), and if that does not resolve after a few minutes of applying pressure may require to seek medical attention. Internal bleeding may be initially asymptomatic, but initial signs can include hypotension, abnormal heart rate or breathing, dizziness or loss of consciousness, in addition to observing blood.
Phenotype Phebruary Day 7 - Neutropenia

Can you believe that the end of week 1 of Phenotype Phebruary is already here?! Time flies when you’re having fun.

In the first six days, I tried to initiate conversations around phenotyping diseases that were primarily defined by condition occurrence records (T2DM, T1DM, AFib, multiple myeloma, Alzheimers, bleeding). But there continues to be a lot of interest in our community in using measurement values as part of the phenotyping process. So, today, let’s talk about Neutropenia.

Clinical description:

Neutropenia is abnormally low count of neutrophils in the blood. Neutrophils are the primary circulating white blood cells and function as part of the immune system to respond to inflammation and bacterial infections. So, persons with neutropenia are at increased risk of infection. While neutropenia itself can be asymptomatic, symptoms often manifest as a result of an infection, and can include fever, pain in swallowing or gums, or skin abscesses. Neutropenia can be congenital or acquired, and acute or chronic, and is known to be associated with various conditions and attributed to drug exposure. While neutropenia is specifically referred to decreased neutrophils, other conditions are known to observe neutropenia in conjunction with other phenomena. Pancytopenia is decrease in red blood cells, white blood cells, and platelets. Leukopenia is low white blood cells of any time, which generally is inclusive of neutropenia.

Neutropenia can be diagnosed by measurement of neutrophils. One diagnostic criteria for severe neutropenia is absolute neutrophil count (ANC) < 500 cells per microliter of blood, while moderate neutropenia can be identified by ANC between 500-1000 cells per microliter, and mild neutropenia is classified as ANC between 1000 - 1500 cells per microliter. Severe neutropenia poses the greater infection risk, and is often where medical attention is recommended. However, since severe neutropenia is rare, it can be difficult to identify and classification, even with ease of measurement from a complete blood count test. Additional bone marrow biopsy may be required as a diagnostic procedure.

Treatment for neutropenia can include granulocyte colony stimulating factor (G-CSF), including filgrastim, and antibiotics to manage bacterial infections.