Background

• The impact of COVID-19 on the healthcare system is substantial
• Resilience of healthcare system would vary across systems, regions, and countries.
• The COVID-19 pandemic can increase or decrease certain healthcare uses or conditions, but the effect would vary across time points.
• Systematic assessment of temporal pattern of healthcare use for diverse conditions is required.
Background: Previous OHDSI work

• CHARYBDIS: Characterizing Health Associated Risks, and Your Baseline Disease In SARS-COV-2
 – 1) Describe the baseline demographics, clinical characteristics, treatments, symptoms and outcomes of interest among individuals with COVID-19 overall and stratified by sex, age and specific comorbidities
 – 2) Describe characteristics and outcomes of influenza patients between September 2017 and April 2018 compared to the COVID-19 population
Aims

• Identification of the temporal change in healthcare use across the pre- and post-COVID-19 era including:
 – The incidence of certain conditions (e.g. hypertension)
 – The prevalence of certain conditions (e.g. hypertension)
 – Use of certain care/services (e.g. prescribing antihypertensive drugs)

• Identification of temporal causality between COVID-19 and epidemiological changes of target diseases
 – Does COVID-19 change the incidence, prevalence of certain conditions or treatment pattern of diseases?
 – If so, would it have an impact on future burden of healthcare system?
Benchmark research: Acute effect of COVID-19

- Data source: UK CPRD (13% of UK population)
- Method: Interrupted time-series analysis
- Target: Condition
 - Diabetic emergency
 - Mental health conditions
 - Acute respiratory events
 - Acute cardiovascular events
 - Acute alcohol-related event

Mafi et al., JAMA, 2022
Use of repurposed and adjuvant drugs in hospital patients with COVID-19: multinational network cohort study

Benchmark research: Trends in the treatments for COVID-19

- Data source: OHDSI network
- Method: Calculating numbers
- Target: treatments for COVID-19 including hydroxychloroquine

Prats-UrIBE et al., BMJ, 2021
Analytic Plan

• The number of incidence, prevalence, and the counts will be aggregated for digital phenotypes (aka. Cohort) monthly before and after COVID-19

• Later, the temporal pattern can be analyzed by using statistical methods such as interrupted times series regression
(hidden?) Aims

- Bring more researchers to OHDSI (esp. those in APAC region)
- Let them lead OHDSI studies

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Leader</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Nicole</td>
<td>Residential care/Nursing home care: Visit categories</td>
</tr>
<tr>
<td>Japan</td>
<td>Eri Matsuki; Prof Hiramatsu</td>
<td>Hematologic disease</td>
</tr>
<tr>
<td>Korea</td>
<td>Chan; Yongjae Lee</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Singapore</td>
<td>Yizhi, Mornin</td>
<td>Diabetes</td>
</tr>
<tr>
<td>US</td>
<td>Asieh</td>
<td>Cancer</td>
</tr>
<tr>
<td>Korea</td>
<td>Jaehwa Jung</td>
<td>Allergic disease in children</td>
</tr>
</tbody>
</table>
Dedicated ATLAS for this study on GCP

ATLAS

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Created</th>
<th>Updated</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>COPY OF: Patient with T2DM (2)</td>
<td>05/16/2022 2:21 PM</td>
<td>05/16/2022 2:21 PM</td>
<td>anonymous</td>
</tr>
<tr>
<td>48</td>
<td>Persons with T2DM</td>
<td>05/16/2022 1:38 PM</td>
<td>05/16/2022 1:39 PM</td>
<td>anonymous</td>
</tr>
<tr>
<td>47</td>
<td>Persons with 12d m</td>
<td>05/16/2022 1:36 PM</td>
<td>05/16/2022 1:37 PM</td>
<td>anonymous</td>
</tr>
<tr>
<td>46</td>
<td>Incidence of 12d m among persons in 2018 with 365d prior observation and no prior 12d m</td>
<td>05/16/2022 1:08 PM</td>
<td>05/16/2022 1:12 PM</td>
<td>anonymous</td>
</tr>
<tr>
<td>45</td>
<td>Prevalence of 12d m among persons in 2018 with 365d prior observation</td>
<td>05/16/2022 1:08 PM</td>
<td>05/16/2022 1:08 PM</td>
<td>anonymous</td>
</tr>
<tr>
<td>44</td>
<td>COPY OF: Patient with T2DM (1)</td>
<td>05/16/2022 1:03 PM</td>
<td>05/16/2022 1:04 PM</td>
<td>anonymous</td>
</tr>
<tr>
<td>43</td>
<td>[TROY] erasurgrel (TRITON-TIMI 38)</td>
<td>05/16/2022 9:02 AM</td>
<td>05/16/2022 9:02 AM</td>
<td>anonymous</td>
</tr>
<tr>
<td>42</td>
<td>[TROY] ticagrelor (TRITON-TIMI 38)</td>
<td>05/16/2022 8:57 AM</td>
<td>05/16/2022 9:01 AM</td>
<td>anonymous</td>
</tr>
<tr>
<td>41</td>
<td>[TROY] clopidogrel (PLATO)</td>
<td>05/16/2022 8:54 AM</td>
<td>05/16/2022 9:01 AM</td>
<td>anonymous</td>
</tr>
<tr>
<td>40</td>
<td>[APAC] Persons with multiple sclerosis</td>
<td>05/13/2022 4:52 AM</td>
<td>05/13/2022 4:52 AM</td>
<td>anonymous</td>
</tr>
<tr>
<td>39</td>
<td>[APAC] Incidence of multiple sclerosis in persons in 2018 with 365d prior observation</td>
<td>05/13/2022 4:50 AM</td>
<td>05/13/2022 4:50 AM</td>
<td>anonymous</td>
</tr>
<tr>
<td>37</td>
<td>[APAC] Persons in 2018 with 365d prior observation and no prior multiple sclerosis</td>
<td>05/13/2022 4:48 PM</td>
<td>05/13/2022 4:48 PM</td>
<td>anonymous</td>
</tr>
<tr>
<td>38</td>
<td>[APAC] Prevalence of multiple sclerosis among persons in 2018 with 365d prior observation</td>
<td>05/13/2022 4:48 PM</td>
<td>05/13/2022 4:48 PM</td>
<td>anonymous</td>
</tr>
<tr>
<td>6</td>
<td>[Phenotype]February! Persons with new type 2 diabetes mellitus at first dx rx or lab</td>
<td>04/12/2022 8:09 PM</td>
<td>05/13/2022 2:39 PM</td>
<td>anonymous</td>
</tr>
<tr>
<td>4</td>
<td>[Phenotype]February! Persons with new type 2 diabetes mellitus at first diagnosis</td>
<td>04/12/2022 6:17 PM</td>
<td>05/13/2022 2:38 PM</td>
<td>anonymous</td>
</tr>
</tbody>
</table>

http://34.148.35.102/#/home
Heritage of Phenotype Phebruary

28 Days, 28 Phenotypes

Phenotype Phebruary

Join The Conversations!

https://www.ohdsi.org/phenotype-phebruary/
The results from the pilot study: CHAPTER-DM
led by Singaporean team (Yizhi Dong, Mornin Feng Mengling)

- Sharp decline in the incidence of **DM** in the Australia LPD in 2020
 - Less evident in the Japan claims
- Rebound of **DM** incidence in 2021 in the Australia LPD
The results from the pilot study: CHAPTER-Hematology led by Japanese team (Eri Matsuki)

• Sharp decline in the incidence of multiple myeloma in both Australia and Japan
The results from the pilot study: CHAPTER-CVD
led by Korean team (Seng Chan You)

- Sharp decline in the incidence of hypertension, AMI, and HF in the Australia LPD in 2020
 - This trend is less evident in the Japan claims
- Rebound of incidence of cardiovascular diseases in 2021 in the Australia LPD
Plans

• Create the skeleton package for CHAPTER study
 – Based on CohortIncidence Package
 • https://github.com/OHDSI/CohortIncidence
 – Need to modify the package to calculate monthly incidence

• Bring more researchers and let them create more cohorts of interest

• Call for data partners

• Thanks to the OHDSI and IQVIA team for coordinating this project
Thank You for your time