Large-scale Bayesian sparse regression for OHDSI network studies

Aki Nishimura

Problem Opportunity for OHDSI

Many health databases are too small & too heterogeneous.

Problem Opportunity for OHDSI

Many health databases are too small & too heterogeneous.

Large-scale L^1 -penalized regression: a statistical engine behind OHDSI studies

Large-scale L^1 -penalized regression: a statistical engine behind OHDSI studies

International Journal of **Epidemiology**

Evaluating large-scale propensity score performance through real-world and synthetic data experiments

Yuxi Tian ™, Martijn J Schuemie, Marc A Suchard

International Journal of Epidemiology, Volume 47, Issue 6, December 2018, Pages 2005–2014, https://doi.org/10.1093/ije/dyy120

Published: 22 June 2018 Article history ▼

Large-scale L^1 -penalized regression: a statistical engine behind OHDSI studies

Cyclops

Cyclops is part of the HADES.

Introduction

Cyclops (Cyclic coordinate descent for logistic, Poisson and survival analysis) is an R package for performing large scale regularized regressions.

Examples

```
library(Cyclops)
cyclopsData <- createCyclopsDataFrame(formula)
cyclopsFit <- fitCyclopsModel(cyclopsData)</pre>
```

Penalized vs. Bayesian sparse regression

Under Bayes, data y and X inform unknown β via:

$$\pi_{ ext{post}}(oldsymbol{eta} \,|\, oldsymbol{y}, oldsymbol{X}) \propto L(oldsymbol{y} \,|\, oldsymbol{X}, oldsymbol{eta}) \, \pi_{ ext{prior}}(oldsymbol{eta}).$$

Penalized vs. Bayesian sparse regression

Using prior is analogous to placing *penalty* on β :

$$oldsymbol{\hat{oldsymbol{eta}}} = \operatorname{argmin}_{oldsymbol{eta}} \{ -\log L(oldsymbol{y} \, | \, oldsymbol{X}, oldsymbol{eta}) + \operatorname{pen}(oldsymbol{eta}) \}$$

where pen($\boldsymbol{\beta}$) "=" $-\log \pi_{\mathrm{prior}}(\boldsymbol{\beta})$.

Penalized vs. Bayesian sparse regression

Using prior is analogous to placing *penalty* on β :

$$oldsymbol{\hat{oldsymbol{eta}}} = \operatorname{argmin}_{oldsymbol{eta}} \{ -\log L(oldsymbol{y} \, | \, oldsymbol{X}, oldsymbol{eta}) + \operatorname{pen}(oldsymbol{eta}) \}$$

where pen($\boldsymbol{\beta}$) "=" $-\log \pi_{\mathrm{prior}}(\boldsymbol{\beta})$.

Example: Bridge prior $\pi_{\text{prior}}(\beta_j | \tau) \propto \tau^{-1} \exp(-|\beta_j/\tau|^{\alpha})$

Bayesians often rely on Monte Carlo simulation, drawing

$$oldsymbol{eta}^{(1)}, \dots, oldsymbol{eta}^{(M)} \sim \pi_{ ext{post}}(\,\cdot\,|\,oldsymbol{y}, oldsymbol{X}),$$

and use $M^{-1}\sum_m \delta_{\pmb{\beta}^{(m)}}(\cdot)$ to quantify the posterior.

Bayesians often rely on Monte Carlo simulation, drawing

$$oldsymbol{eta}^{(1)}, \dots, oldsymbol{eta}^{(M)} \sim \pi_{ ext{post}}(\,\cdot\,|\,oldsymbol{y}, oldsymbol{X}),$$

and use $M^{-1}\sum_m \delta_{\boldsymbol{\beta}^{(m)}}(\cdot)$ to quantify the posterior.

This computation can be **prohibitively expensive**.

Theory and Methods

Prior-Preconditioned Conjugate Gradient Method for Accelerated Gibbs Sampling in "Large *n*, Large *p*" Bayesian Sparse Regression

Example: Compare alt. treatments for atrial-fibrillation, blood anti-coagulants *dabigatran* and *warfarin*.

Objective: Study relative risk of *gastrointestinal bleeding*.

- n=72,489 patients, 27.3% dabigatran users
- p = 22,175 covariates

Example: Compare alt. treatments for atrial-fibrillation, blood anti-coagulants *dabigatran* and *warfarin*.

Objective: Study relative risk of *gastrointestinal bleeding*.

- n=72,489 patients, 27.3% dabigatran users
- p = 22,175 covariates

Computing time: With the previous state-of-the-art,

- Propensity score model
 - -106 hours for 5,500 iterations,
- Outcome model with subgroup-effect interactions
 - -212 hours for 11,000 iterations.

Example: Compare alt. treatments for atrial-fibrillation, blood anti-coagulants *dabigatran* and *warfarin*.

Objective: Study relative risk of *gastrointestinal bleeding*.

- n=72,489 patients, 27.3% dabigatran users
- p = 22,175 covariates

Computing time: With the new algorithm,

- Propensity score model
 - 11.4 hours (9.3-fold speedup) for 5,500 iterations,
- Outcome model with subgroup-effect interactions
 - -11.3 hours (18.8-fold speedup) for 11,000 iterations.

Example: Compare alt. treatments for atrial-fibrillation, blood anti-coagulants *dabigatran* and *warfarin*.

Objective: Study relative risk of *gastrointestinal bleeding*.

- n=72,489 patients, 27.3% dabigatran users
- p = 22,175 covariates

Computing time: With the new algorithm + GPU,

- Propensity score model
 - -0.62 hours (171-fold speedup) for 5,500 iterations,
- Outcome model with subgroup-effect interactions
 - -0.61 hours (347-fold speedup) for 11,000 iterations.

New algorithm in Python's BayesBridge

BayesBridge

Python package for Bayesian sparse regression, implementing the standard (Polya-Gamma augmented) Gibbs sampler as well as the CG-accelerated sampler of Nishimura and Suchard (2018). The latter algorithm can be orders of magnitudes faster for a large and sparse design matrix.

Installation

pip install bayesbridge

Background

The Bayesian bridge is based on the following prior on the regression coefficients β_j 's:

$$\pi(\beta_j \mid \tau) \propto \tau^{-1} \exp\left(-|\beta_j/\tau|^{\alpha}\right) \text{ for } 0 < \alpha \le 1$$

The Bayesian bridge recovers the the Bayesian lasso when $\alpha=1$ but can provide an improved separation of the significant coefficients from the rest when $\alpha<1$.

Usage

bayesbridger: R wrapper based on reticulate

Set up Python environments,

```
library(bayesbridger)
configure_python(envname = "bayesbridge")
```

instantiate BayesBridge with data y and X,

```
model <- create_model(y, X)
prior <- create_prior(bridge_exponent=.25)
bridge <- instantiate_bayesbridge(model, prior)</pre>
```

and sample from the posterior!

Thank you!