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FI Motivation: Models sometimes do not transport across
databases
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Question: If a model does not transport across databases — will it transport into a clinical setting?




¢ In this paper we trained models across different databases and
/" then used ensemble learning to combine them...
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F , < Ensemble strategies:

Fusions:

- Weighted combination
of level 1 models’
predicted risk

- Simple to implement —
can just take the mean
predicted risk across
level 1 models (uniform
ensemble)

Mixture of experts:

- Picks one level 1
model’s predicted risk
per patient based on
some rule

Stacker:

- Train a supervised
model that uses the
level 1 models’
predictions as features

- Requires more labelled

data to learn from (in
this paper we used
some data from the
held-out database)
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Methods: We used a leave-one-database out validation
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Results: Discrimination
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Level 1 models (model trained
on one database):

- Mostly slightly below 0 so s
slightly worse transportabiltiy
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Results: Discrimination
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Fusion ensembles (weighted
combination of level 1 models
predictions):

- Mostly around 0 so good
transportability in terms of
discrimination

- Better than the level 1
models.
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Results: Discrimination
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Other ensembles (mixture of
experts/stacker):

- Some had very poor
transportability




Results: Calibration

Y-axis = difference between mean
predicted risk and observed risk (so
anything above or below 0 means
poor calibration)

All models are poorly calibrated
(except the stackers that were
effectively recalibrated)
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Fl We now have an R package for ensemble learning

EnsemblePatientLevelPrediction

() R-CMD-check [passing  codecov [91%

EnsemblePatientLevelPrediction is part of HADES.

Introduction

EnsemblePatientLevelPrediction is an R package for building and validating ensemble patient-level predictive
models using data in the OMOP Common Data Model format. The package expands the OHDSI R
PatientLevelPrediction package to enable ensemble learning.

In our study here we found that combining models developed using different databases resulted in models that
had better discrimination performance compared to the level 1 models (single database) when transported to new
data. However, calibration was poor. This has prompted the EnsemblePatientLevelPrediction package where users
can combine models developed on the same database or models developed on different databases.

User Documentation

Vignette: EnsemblePatientLevelPrediction
Website: Documentation can be found on the package website.

Package manual: EnsemblePatientLevelPrediction.pdf

https://github.com/OHDSI/EnsemblePatientlL evelPrediction



https://github.com/OHDSI/EnsemblePatientLevelPrediction

Email: jreps@its.jnj.com



‘ The different ensemble strategies: Uniform Fusion

P

PATIENT Db1 Model Db2 Model Db3 Model Db4 Model

prediction prediction prediction prediction
1 40% 50% 30% 80% = (40+50+30+80)/4 = 50%
2 8% 1% 1% 2% = (8+1+1+2)/4 = 3%



/4 The different ensemble strategies: Weighted Fusion

X1=0.2 X2=0.3 X3=04 X4 =0.1
PATIENT Db1 Model Db2 Model Db3 Model Db4 Model
prediction prediction prediction prediction
1 40% 50% 30% 80% = (40*x1+50*x2+30*x3+80*x4)/4
2 8% 1% 1% 2% = (8"x1+1*x2+1*x3+2*x4)/4

Weights based on:

- AUROC in test set
- Data similarity
- Patient similarity




/4 The different ensemble strategies: Mixture of expert

PATIENT Db1 Model Db2 Model Db3 Model Db4 Model
prediction prediction prediction prediction
1 40% 50% 30% 80% =50%
2 8% 1% 1% 2% = 8%

Base model selected on:

- Patient age similarity



/” The different ensemble strategies: Stacker

PATIENT Db1 Model Db2 Model Db3 Model Db4 Model
prediction prediction prediction prediction
1

40% 50% 30% 80%

2 8% 1% 1% 2%

Strategy: Learn another model that
uses the Db1-Db4 predictions as
predictors (this requires some more
labelled data)




