Simple and practical EMR to OMOP CDM ETL tool
Pieter-Jan Lammertyn, Stijn Dupulthys, Louise Berteloot, Peter De Jaeger, Kim Denturck, Nathalie Mertens

Background
Extract-Transform-Load (ETL) processes are very complex1, 2 and are mainly crafted by highly skilled data engineers. The process of transforming the electronic medical record (EMR) data into the observational medical outcomes partnership (OMOP) common data model (CDM) is no exception. The mapping process of the source values to standard concepts is mostly done by subject matter experts, who lack the knowledge of programming the ETL process. Wouldn’t it be nice if we could drastically simplify the ETL process, so that you don’t need seasoned data engineers to start the OMOP CDM journey. Imagine that you just save your queries, Usagi3 comma separated value (CSV) text files and custom concept CSV’s on disk, and run a command line interface (CLI) tool that does all the ETL magic automatically. 

Methods
The main strength of the CDM is its simplified schema4. This scheme is a relational data model, where each table has a primary key and can have foreign keys to other tables. Because of the relational data model, we can extract the dependencies of the tables from the scheme. For example, the provider table is dependent on the care_site table, which is in its turn dependent on the location table. If we flatten that dependency graph, we have a sequence of ETL steps that we need to follow to have consistent data in our OMOP CDM. These ETL steps can be automated, so a hospital can focus its resources on the queries and the mapping of the concepts. The automated ETL consists of multiple tasks. It needs to execute queries, add custom concepts, apply the Usagi source to concept mapping, and do a lot of housekeeping. An example of that housekeeping is the autonumbering of the OMOP CDM primary keys, for which the ETL process needs to maintain a swap table that holds the key of the source table and the generated sequential number of the CDM table’s primary key. Another example of the housekeeping is the upload and processing of the Usagi CSV’s and also the upload and parsing of the custom concept CSV’s. In an ETL process data is divided in zones5. The raw zone holds the source data (for example the data from the EMR), the work zone holds all the house keeping tables of the ETL process and the gold zone holds our final OMOP CDM.
[bookmark: _GoBack][image: ]After designing the architecture, the implementation needs to be developed. We have two options to choose from: configuration and convention as design paradigm. We choose convention over configuration6, because it decreases the number of decisions the user has to make and eliminates the complexity. As convention a specific folder structure (Figure 1) is adopted. A folder is created for each OMOP CDM table, where the SQL queries are stored to fill up the specific CDM table. In the table folders we also have for each concept column a sub folder. Those concept column sub folders hold our Usagi CSV’s (files ending with _usagi.csv). We also have a custom folder in the concept column sub folder, that holds the custom concept CSV’s (files ending with _concept.csv). With this convention in place, our ETL CLI tool has everything it needs to do its magic.Figure 1. Folder structure convention

One final requirement we want to build in the ETL CLI tool, is that each ETL step is an atomic operation, it either fails or succeeds, so that there is no possibility to corrupt the final OMOP CDM data.

Results
In our hospital we have EMR data safely stored in BigQuery. The folder structure with the queries, Usagi CSV’s and custom concept CSV’s are stored in Git for version control. The ETL CLI tool runs on the local computer, it executes the SQL queries in BigQuery, converts the Usagi and custom concept CSV’s to parquet, uploads them to Cloud Storage and applies them in BigQuery. This all with an incredible ease and speed, without the need for the users to understand the deep internals of the ETL process.

Conclusion
Having a simplified yet robust ETL tool, makes it possible for hospitals that don’t have specialized data engineers, to engage in the OMOP CMD journey. This ETL CLI fills a gap in the OHDSI tooling belt.

Acknowledgment
The authors gratefully acknowledge the Flemish Agency for Innovation and Entrepreneurship (VLAIO) and the EHDEN foundation for supporting this research. 



References/Citations
1. The Book of OHDSI 6.4 Step 3: Implement the ETL. Available from: https://ohdsi.github.io/TheBookOfOhdsi/ExtractTransformLoad.html#step-3-implement-the-etl
2. The Challenge of an Extraction-Transformation-Loading Tool Selection. Available from: https://www.researchgate.net/publication/330468434_The_Challenge_of_an_Extraction-Transformation-Loading_Tool_Selection
3. Usagi software tool. Available from: https://ohdsi.github.io/Usagi/
4. The Book of OHDSI 4 The common Data Model: CDM diagram. Available from: https://ohdsi.github.io/TheBookOfOhdsi/CommonDataModel.html#fig:cdmDiagram
5. A Zone Reference Model for Enterprise-Grade Data Lake Management. Available from https://www.ipvs.uni-stuttgart.de/departments/as/publications/giebleca/20_zoneReferenceModel_EDOC_Preprint.pdf
6. Patterns in Practice - Convention Over Configuration By Jeremy Miller February 2009. Available from: https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-in-practice-convention-over-configuration





image1.png
> DEVICE_EXPOSURE
\ DRUG_EXPOSURE
 drug_concept_id
+ custom
B medicatie2_concept.csv
B medicatie2_usagicsv
 drug_type_concept id
> custom

B drug_type_concept_id_usagi.csv
 route_concept_id
+ custom
B medicatie_recdeel concept.csv
B medicatie_recdeel_usagi.csv
= medicatie.sql
 EPISODE
> episode_concept_id




