
 

 

 

DPM360: New Additions to Advanced Disease Progression Modeling 

Akira Koseki, Italo Buleje, Prithwish Chakraborty, Elif Eyigoz, Mohamed Ghalwash, 
Takashi Itoh,Toshiya Iwamori, Michharu Kudo, Pablo Meyer, Kenney Ng, Parthasarathy 

Suryanarayanan, Hiroki Yanagisawa, Jianying Hu 
 

Background 

Disease Progression Modeling (DPM)1 aims to characterize the progression of a disease and its 
comorbidities overtime using a wide range of analytics models. Typical approaches include predictive 
modeling2, time-to-event estimation3,4,5,6,7, and state-based modeling8,9,10 for key disease-related events. 
DPM has applications throughout the healthcare ecosystem, from providers, to payers, and 
pharmaceutical companies. But the complexity of building effective DPM models can be a roadblock for 
their rapid experimentation and adoption when adopting cutting-edge algorithms. Some of this is 
addressed by standardization of data model and tooling for data analysis and cohort selection. However, 
there are still unmet needs to facilitate the development of advanced machine learning techniques such 
as recent deep learning and probabilistic modeling. 

 
Figure 1. DPM360 component view 

To address this, we have been developing Disease Progression Modeling Workbench 360(DPM360) as an 
opensource project (https://ibm.github.io/DPM360/). DPM360 is an easy-to-install system to help 
research and development of DPM models (Figure 1). It manages the entire modeling life cycle, from data 
analysis (e.g, cohort identification) to machine learning algorithm development and prototyping. While 
we showed general features of DPM360 and predictive analysis in the past OHDSI11 event12, we now 
demonstrate advanced modeling capability including OHDISI data tooling, and extensible training 
framework which exploits recent achievements of time-to-event estimation, and state-based modeling. 

Methods 

 
Figure 2. Model training pipeline of Lightsaber in DPM360 



 

 

 

Our general training pipeline is illustrated in Figure 2. At first, being connected to an OMOP/CDM 
database, a user defines cohorts of interest using the GUI of ATLAS. Next, using feature extraction modules 
in Lightsaber, features as explanatory variables, and outcome as the dependent variable, if necessary, are 
extracted. In most cases, such features are formed as time series of standard clinical data including 
diagnosis, drug prescription, procedures, lab test results, and so on. Subsequently, the user trains models 
using the core training pipeline consisting of the components of Data Loader, Trainer, and Post-hoc 
Analyzer. Note that modules running on the framework are extensible, and the user can easily add new 
functionalities using ordinary Python programing conventions for machine learning. 

 
Figure 3. Extending training pipeline of Lightsaber for advanced disease progression modeling 

As described in Figure 2, the core training pipeline is constructed by Data Loader, Trainer, and Post-hoc 
Analyzer. The Data Loader performs necessary data pre-processing such as data transformation, 
conversion, scaling, imputation, and so on. The subsequent Trainer then conducts mini-batch loop to 
update parameters of the models to optimize the specified loss for the input data. Finally, the user 
evaluates the learned models using metrics and other standard analyses in the problem domain. 

For extending the pipeline, the user can modify and override the base components of the core training 
pipeline whenever it is needed. Figure 3 illustrates the base pipeline extended for three typical disease 
progression problems, predictive modeling using classification2, time-to-event estimation using survival 
analyses3,4,5,6,7, and state-based modeling using Hidden Markov models8,9,10. Since the first extension has 
already been discussed11, we focus on the latter two. First, an extension for time-to-event analyses solves 
survival problems when censored patients are also included. The extended Data Loader provides event 
flags as extra information. The typical Trainer contains representation learning and the prediction layer 
with specific loss functions to obtain correct rankings between censored and uncensored patients such as 
Negative Partial Log Likelihood studied in Cox Regression3. In the Post-hoc Analyzer, the users conduct 
Kaplan-Meier estimation13 to measure the performance of the learned models. Second, an extension for 
Space-State Modeling finds hidden states and the time-series progression of patients. This is unsupervised 
modeling thus the extended Data Loader does not provide outcome information. In the Trainer, events 
are typically modeled as state-transitions using Hidden Markov models and its variant algorithms, whose 
parameters are trained to maximize the likelihood of the observations. In the Post-hoc Analyzer, the users 
can examine the learned transition matrices and other estimated parameters to describe the disease 
progression. 



 

 

 

Results 

To demonstrate the training system, we constructed modeling pipelines using MIMIC III14. Specifically, we 
defined and extracted cohorts related to mortality in critical care settings from an OMOP CDM version of 
the MIMICIII dataset15. Using ATLAS, we defined our target cohort consisting of adult patients who have 
been hospitalized for the first time for at least two days, and who have at least one measurement recorded 
within the first 48 hours, forming our time-series features, and our outcome cohort of adult patients who 
died. In the past OHDSI event, we demonstrated classification pipelines (https://ibm.github.io/DPM360/) 
where we predicted whether the patient died in hospital within 30 days of the first admission. Following 
up, we want to demonstrate our capabilities to do time-to-event and space-state modeling using the same 
cohort setting. For time-to-event analyses, we estimate the survival rate in the presence of censored 
patient using the time-series features. We provide traditional algorithms including Cox Regression3 and 
Random Survival Forests4, as well as more recently published advanced methods such as RankSVX5, 
DeepHit6, VAECox7. For space-state modeling, transitions among hidden states during 48 hours of 
observations are modeled. Hidden states with their typical parameter distributions, a transition matrix 
among those states, and state-transition pattern for a patient are estimated. We provide a traditional 
discrete-time Hidden Markov model8 as well as a continuous-time Hidden Markov model9 where modeling 
using continuous-time transitions is possible. 

Conclusion 

We explained and showed the capability of Python-based training framework for disease progression 
modeling. We plan to incorporate those components to our opensource project of DPM360. It is believed 
that this can facilitate disease progression modeling using OHDSI data accumulation, especially in the 
Python community, and encourages the developments and commitments of advanced models leveraging 
opensource activities. 
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