

# OMOP Common Data Model Extract, Transform & Load

**OHDSI Symposium 2022** 

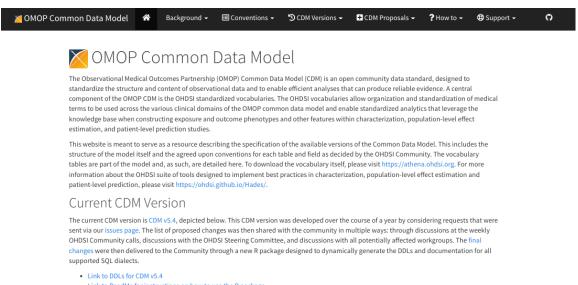
Clair Blacketer, Melanie Philofsky



## Agenda Total time 9:00-10:50

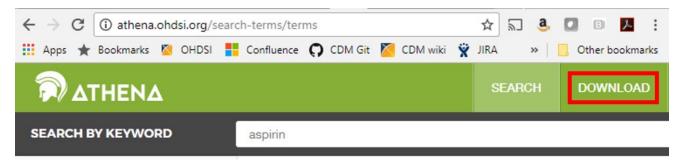
| Time          | Agenda item               |
|---------------|---------------------------|
| 9:00 – 9:25   | Introduction to OMOP CDM  |
| 9:25 – 9:50   | OHDSI ETL Best Practices  |
| 9:50 - 10:00  | Energy Break              |
| 10:00 – 10:25 | ETL Exercise              |
| 10:25 – 10:50 | CDM & Vocabulary Exercise |




## Leads

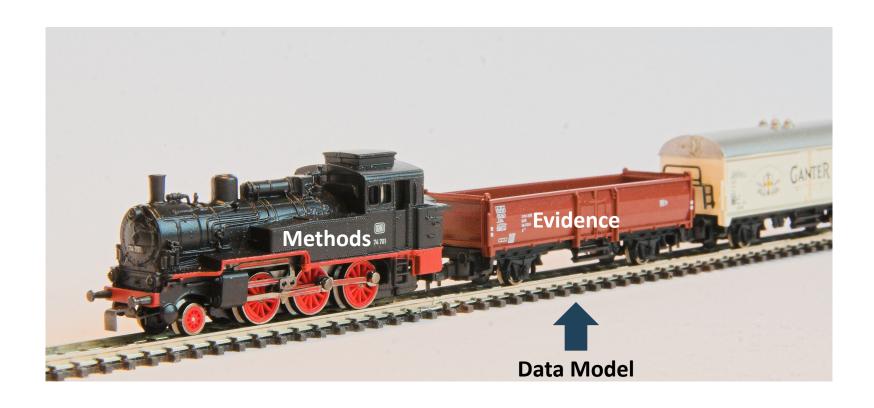





## Helpful Bookmarks

### https://ohdsi.github.io/CommonDataModel/




. Link to ReadMe for instructions on how to use the R package

### https://athena.ohdsi.org





## Why a Common Data Model





## Why a Common Data Model

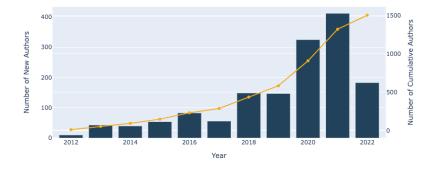




## Why a Common Data Model



Community Dashboard Dashboards

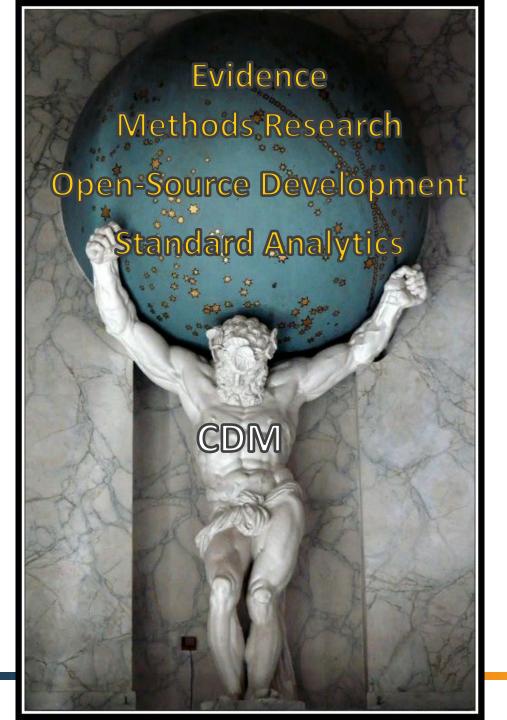

### **Publication Analysis**

PubMed Publication Tracking highlights scholarship generated using the OMOP Common Data Model, OHDSI tools, or the OHDSI network. These publications represent scientific accomplishments across areas of data standards, methodological research, open-source development, and clinical applications. We provide the resource to search and browse the catalogue of OHDSI-related publications by date, author, title, journal, and SNOMED terms. We monitor the impact of our community using summary statistics (number of publications and citations), and the growth and diversity of our community with the number of distinct authors. Searches for new papers are performed daily, and citation counts are updated monthy.

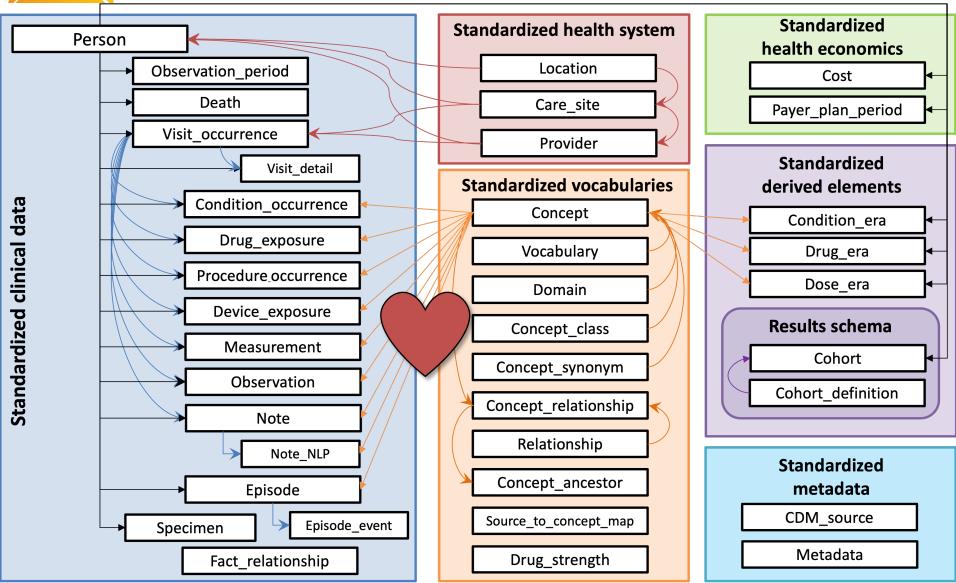
#### **OHDSI Publications & Cumulative Citations**

# 100 Number of Publications

#### **New and Cumulative OHDSI Researchers**

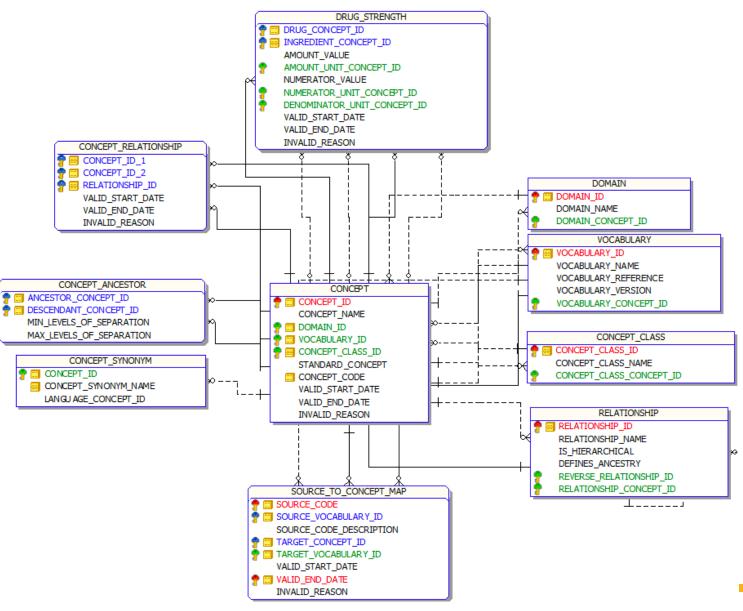






### OMOP CDM

The OMOP CDM is a system of tables, vocabularies, and conventions that allow observational health data to be standardized. It is this standard approach that facilitates rapid innovation in the areas of open-source development, methods research, and evidence generation.






## **OMOP CDM & Vocabulary**





## **OMOP Vocabulary**





## **Different Categories of Concepts**

Nonstandard Concepts

Standard Concepts Classification Concepts

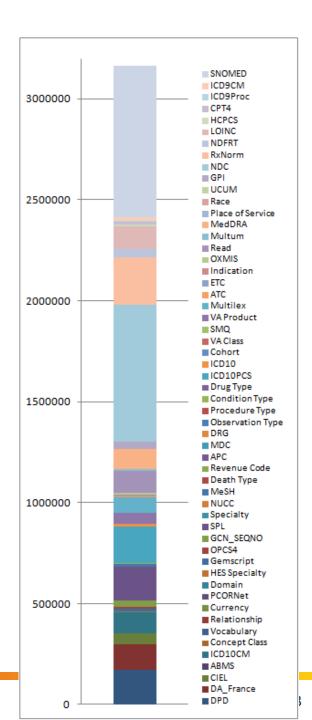
#### **Function**

Unique representation of a source code

#### **Function**

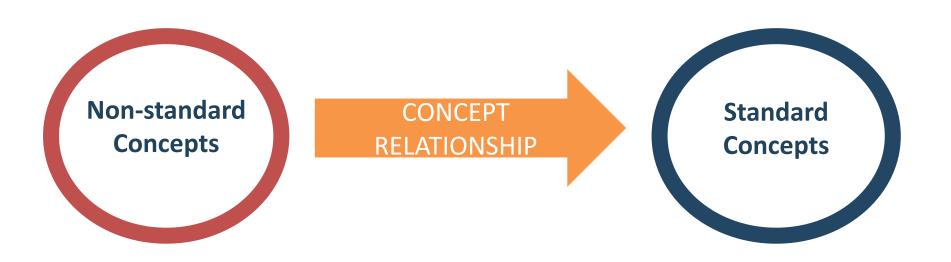
Used for standardized analytics and by OHDSI tools

#### **Function**


Used to perform hierarchical queries



## **OMOP Vocabulary**


 If your source data's codes are in the OMOP Vocab you can use it to translate to a standard

- For example:
  - ICD9 → SNOMED
  - $NDC \rightarrow RXNORM$





## Mapping to Standard Concepts





## Standardizing Terminologies



SOURCE\_CODE
XYZ

i.e. ICPC-1 Dutch
codes, ICD9, etc.

STANDARD\_CONCEPT\_ID
123456789

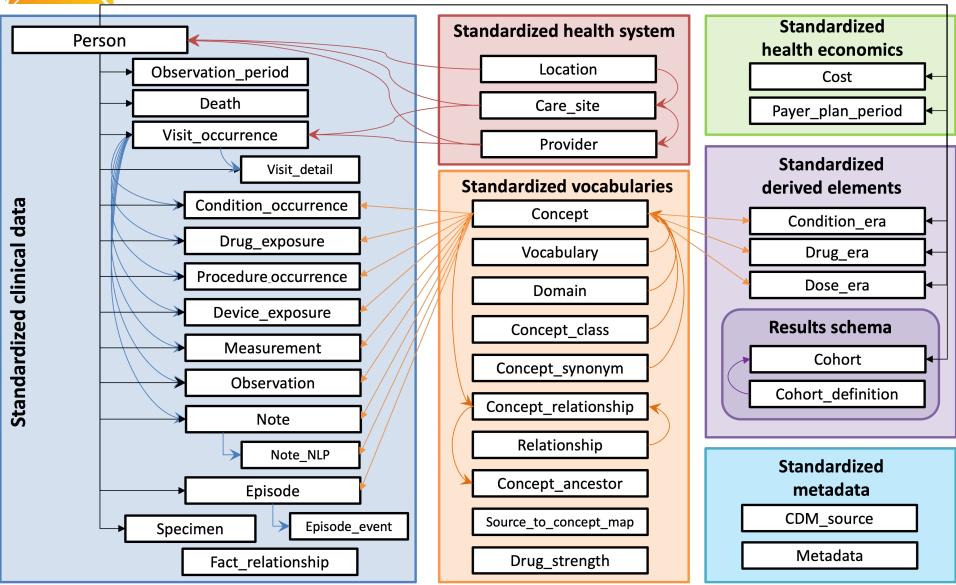
i.e. SNOMED for conditions
and RxNorm, RxNorm
Extension for drugs

#### What is standardized:

- TABLE\_CONCEPT\_ID standard concept the source code maps to, used for analysis
- TABLE\_SOURCE\_CONCEPT\_ID concept representation of the source code, helps maintain tie to raw data
  - TABLE\_SOURCE\_VALUE
     original source code as given in the source table, helps to review data quality

### Ways to get a source code to standard code:

- OMOP Vocabulary (Concept\_Relationship)
- USAGI




### **OMOP Vocab**



- There are two standard queries to help us use the OMOP Vocabulary:
  - SOURCE\_TO\_STANDARD.sql
  - SOURCE\_TO\_SOURCE.sql
- <a href="https://ohdsi.github.io/CommonDataModel/sqlScripts.html">https://ohdsi.github.io/CommonDataModel/sqlScripts.html</a>

### **OMOP CDM**





### **General Conventions**

### The OMOP CDM is a Person centric model





## Table/Field conventions

#### **PERSON**

#### **Table Description**

This table serves as the central identity management for all Persons in the database. It contains records that uniquely identify each person or patient, and some demographic information.

#### **User Guide**

All records in this table are independent Persons.

#### **ETL Conventions**

All Persons in a database needs one record in this table, unless they fail data quality requirements specified in the ETL. Persons with no Events should have a record nonetheless. If more than one data source contributes Events to the database, Persons must be reconciled, if possible, across the sources to create one single record per Person. The content of the BIRTH\_DATETIME must be equivalent to the content of BIRTH\_DAY, BIRTH\_MONTH and BIRTH\_YEAR.

| CDM Field | User Guide                                                                                                                            | ETL Conventions                                                                                                                                                                                                                                          | Datatype | Required | Primary<br>Key | Foreign<br>Key | FK Table | FK<br>Domain |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------------|----------------|----------|--------------|
| person_id | It is assumed that every person with a different unique identifier is in fact a different person and should be treated independently. | Any person linkage that needs to occur to uniquely identify Persons ought to be done prior to writing this table. This identifier can be the original id from the source data provided if it is an integer, otherwise it can be an autogenerated number. | integer  | Yes      | Yes            | No             |          |              |



### General conventions

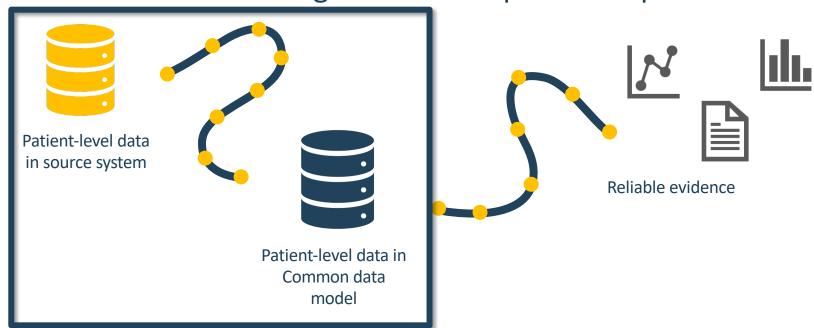
- Required tables: person and observation period
- Fields:
  - \_id
  - \_concept\_id
  - \_source\_concept\_id
  - source value
  - \_type\_concept\_id
- Target concept domain determines target table

### Fields

Variable names across all tables follow one convention:

| Notation           | Description                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _SOURCE_VALUE      | Verbatim information from the source data, typically used in ETL to map to CONCEPT_ID, and not to be used by any standard analytics. For example, CONDITION_SOURCE_VALUE = '787.02' was the ICD-9 code captured as a diagnosis from the administrative claim.                                                                                                                              |
| _ID                | Unique identifiers for key entities, which can serve as foreign keys to establish relationships across entities. For example, PERSON_ID uniquely identifies each individual.  VISIT_OCCURRENCE_ID uniquely identifies a PERSON encounter at a point of care.                                                                                                                               |
| _CONCEPT_ID        | Foreign key into the Standardized Vocabularies (i.e. the standard_concept attribute for the corresponding term is true), which serves as the primary basis for all standardized analytics. For example, CONDITION_CONCEPT_ID = 31967 contains the reference value for the SNOMED concept of 'Nausea'                                                                                       |
| _SOURCE_CONCEPT_ID | Foreign key into the Standardized Vocabularies representing the concept and terminology used in the source data, when applicable. For example, CONDITION_SOURCE_CONCEPT_ID = 45431665 denotes the concept of 'Nausea' in the Read terminology; the analogous CONDITION_CONCEPT_ID might be 31967, since SNOMED-CT is the Standardized Vocabulary for most clinical diagnoses and findings. |
| _TYPE_CONCEPT_ID   | Delineates the origin of the source information, standardized within the Standardized Vocabularies. For example, DRUG_TYPE_CONCEPT_ID can allow analysts to discriminate between 'Pharmacy dispensing' and 'Prescription written'                                                                                                                                                          |




### **ETL Process and Tools**

- Best Practices
- ETL Process
- ETL Tools
  - White Rabbit tool review the output
  - Rabbit in a Hat tool document the conceptual logic
  - Usagi mapping custom source values



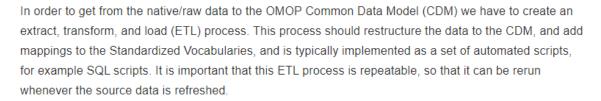
### ETL

- Extract Transform Load
- In order to get from our native/raw data into the OMOP CDM we need to design and develop and ETL process



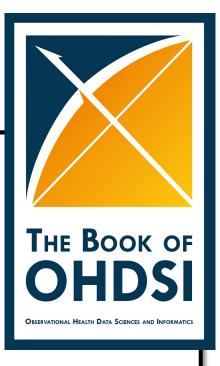
Goal in ETLing is to standardize the format and terminology




### **ETL Process**

The Book of OHDSI Preface I The OHDSI Community 1 The OHDSI Community 2 Where to Begin 3 Open Science II Uniform Data Representation 4 The Common Data Model 5 Standardized Vocabularies 6 Extract Transform Load 6.1 Introduction 6.2 Step 1: Design the ETL 6.3 Step 2: Create the Code Map ... 6.4 Step 3: Implement the ETL 6.5 Step 4: Quality Control 6.6 ETL Conventions and THEMIS 6.7 CDM and ETL Maintenance

### **Chapter 6 Extract Transform Load**

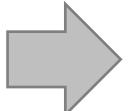

Chapter leads: Clair Blacketer & Erica Voss

#### 6.1 Introduction

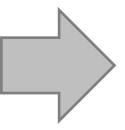


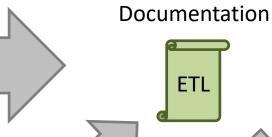
Creating an ETL is usually a large undertaking. Over the years, we have developed best practices, consisting of four major steps:

- 1. Data experts and CDM experts together design the ETL.
- 2. People with medical knowledge create the code mappings.
- 3. A technical person implements the ETL.





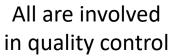


### **ETL Process**








People with medical knowledge create the code mappings








ETL







A technical person implements the ETL

**OHDSI Tools** 



White Rabbit



Rabbit In a Hat

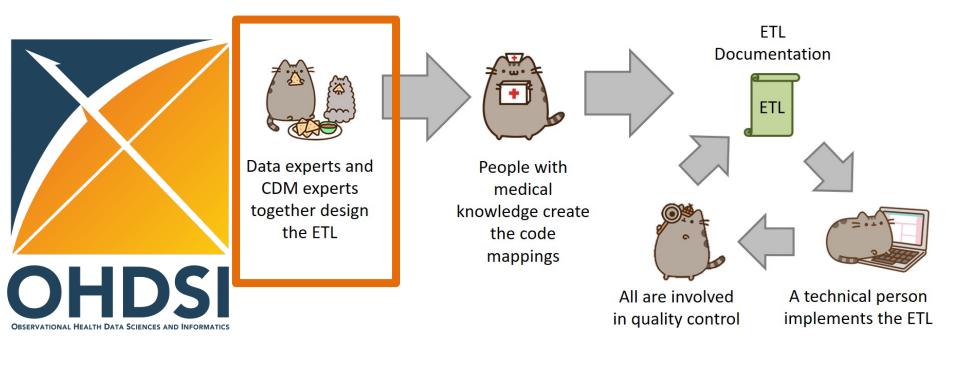


Usagi



White Rabbit




**ACHILLES** 

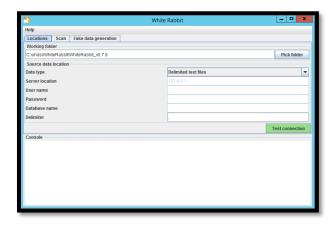


DQD



Rabbit In a Hat






### White Rabbit





 White Rabbit scans source data & creates a csv report on the source data



- The scan can be used to:
  - Learn about your source data
  - Help design the ETL
  - Used by Rabbit In a Hat



## WR Output – ScanReport.xlsx



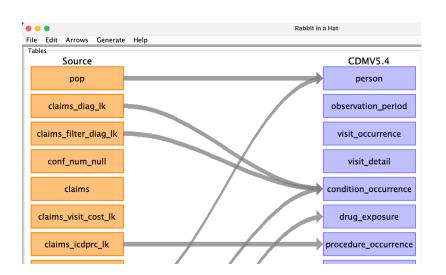
#### **Table/Field Overview**

| Table          | Field              | Description | Type       | Max length | N rows     |
|----------------|--------------------|-------------|------------|------------|------------|
| рор            | der_sex            |             | character  | 1          | 16374539   |
| рор            | der_yob            |             | double pre | 6          | 16374539   |
| рор            | pat_id             |             | character  | 64         | 16374539   |
| рор            | pat_hash_id        |             | character  | 16         | 16374539   |
| рор            | pmtx_flag          |             | numeric    | 1          | 16374539   |
| рор            | anon_ims_pat_id    |             | character  | 11         | 16374539   |
| рор            | pat_region         |             | character  | 2          | 16374539   |
| рор            | pat_state          |             | character  | 2          | 16374539   |
| рор            | pat_zip3           |             | character  | 3          | 16374539   |
| рор            | grp_indv_cd        |             | character  | 1          | 16374539   |
| рор            | mh_cd              |             | character  | 1          | 16374539   |
| рор            | enr_rel            |             | character  | 2          | 16374539   |
| рор            | temp_col1          |             | character  | 0          | 16374539   |
| рор            | temp_col2          |             | character  | 0          | 16374539   |
| рор            | load_row_id        |             | bigint     | 9          | 16374539   |
| claims_diag_lk | person_source_valu |             | character  | 64         | 2992046684 |
| claims_diag_lk | event_start_date   |             | date       | 10         | 2992046684 |
| alaima diaa II | arent and data     |             | data       | 10         | 2002046604 |

#### **Value counts**

|    | Α         | В           | С            | D           |     |
|----|-----------|-------------|--------------|-------------|-----|
| 1  | der_sex ▼ | Frequency 💌 | der_yob   ▼  | Frequency 🔻 | рŧ  |
| 2  | F         | 50479       | 1991.0       | 2030        | Li: |
| 3  | M         | 49514       | 1992.0       | 1970        |     |
| 4  | U         | 7           | 1990.0       | 1947        |     |
| 5  |           |             | 1989.0       | 1908        |     |
| 6  |           |             | 1988.0       | 1873        |     |
| 7  |           |             | 1994.0       | 1872        |     |
| 8  |           |             | 1995.0       | 1806        |     |
| 9  |           |             | 1993.0       | 1805        |     |
| 10 |           |             | 1996.0       | 1716        |     |
| 11 |           |             | 1986.0       | 1676        |     |
| 12 |           |             | 1987.0       | 1643        |     |
| 13 |           |             | 1985.0       | 1633        |     |
| 14 |           |             | 1983.0       | 1588        |     |
| 15 |           |             | 1981.0       | 1581        |     |
| 16 |           |             | 1984.0       | 1576        |     |
| 17 |           |             | 1970.0       | 1555        |     |
| 18 |           |             | 1980.0       | 1553        |     |
| •  | <b>•</b>  | рор         | claims_diag_ | lk clai     | m   |



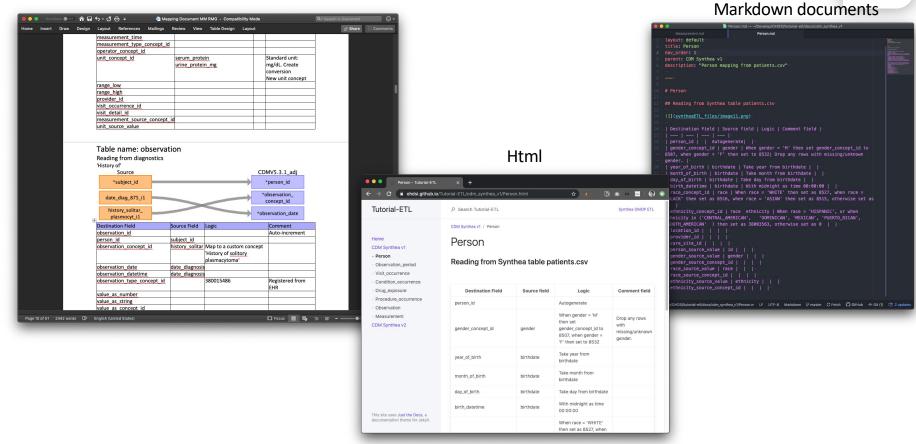

### Rabbit in a Hat

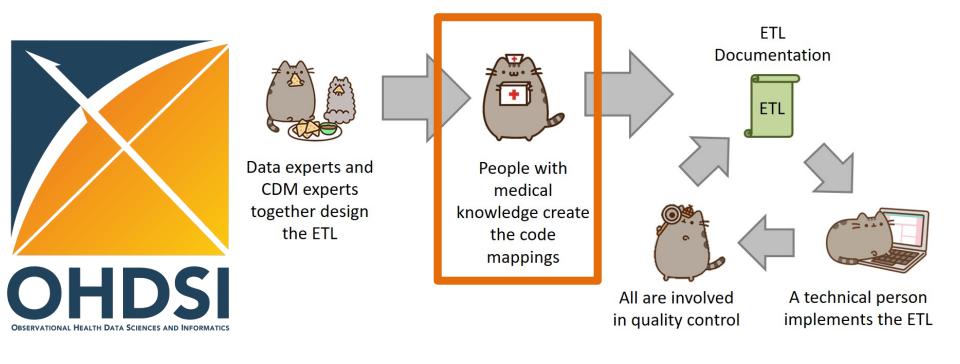


 Read and display a White Rabbit scan document



 Provides a graphical interface to allow a user to connect source data to CDM tables



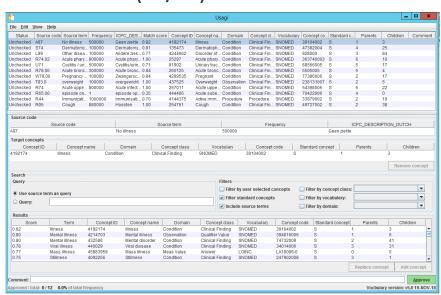




## RiaH - Output



#### Word document







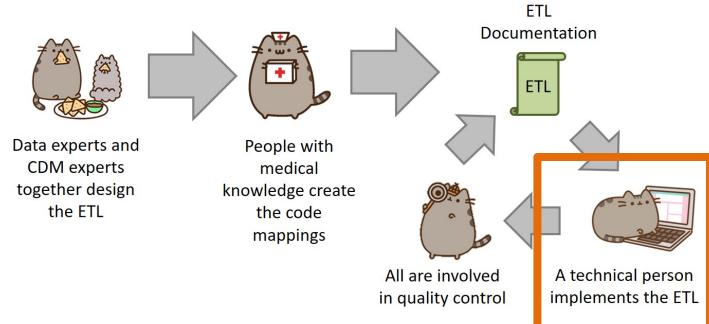

## Usagi



- When the Vocabulary does not contain your source terms you will need to create a map to OMOP Vocabulary Concepts
- Usagi helps you to:
  - Find best matches, automatically and/or manually
  - Automatic matching based on text similarities (itf/df)
  - Create 'source to concept map'






## Overview - Steps



- 1. Get a copy of the Vocabulary from ATHENA
- 2. Download Usagi
- 3. Have Usagi build an index on the Vocabulary

- One-time setup
- 4. Load your source codes and let Usagi process them
- 5. Review and update suggested mappings with someone who has medical knowledge
- 6. Export codes into the SOURCE\_TO\_CONCEPT\_MAP







## **ETL** Implementation

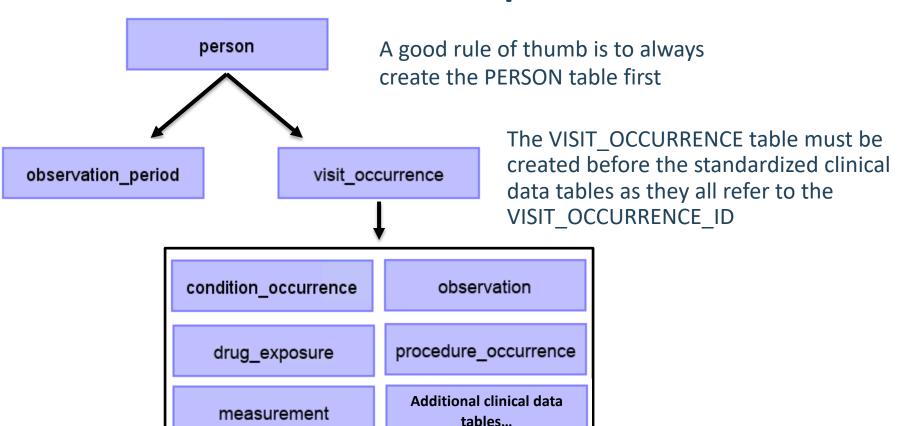


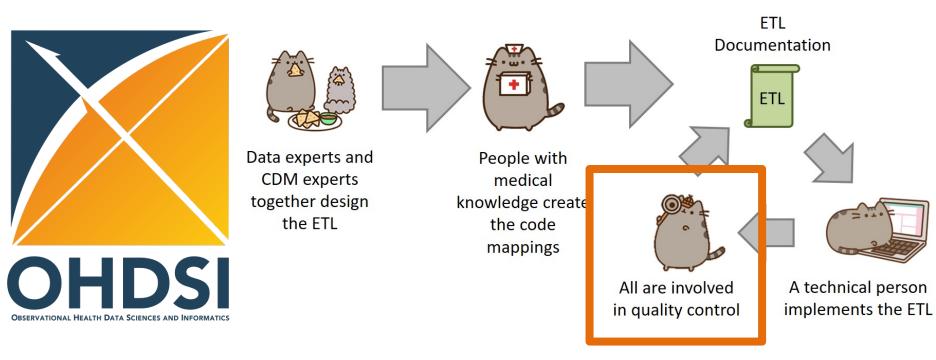
There are multiple tools available to implement your ETL








Your choice will largely depend on the size and complexity of the ETL design. And the tools available to you.




### ETL Implementation



### **General Flow of Implementation**







## Quality



What tools are available to check that the CDM logic was implemented correctly?



Rabbit-in-a-Hat Test Case Framework



**Achilles** 



DataQualityDashboard (DQD)



### **Unit Test Cases**





- Testing your CDM builder is important:
  - ETL is often complex, increasing the danger of making mistakes that go unnoticed
  - CDM can update
  - Source data structure/contents can change over time
- Rabbit-In-a-Hat can construct unit tests, or small pieces of code that can automatically check single aspects of the ETL design



### **Achilles**





Achilles is a data characterization and quality tool available for download here:

https://github.com/OHDSI/Achilles

For an example of how it was run for some sample data, that R script is located here:

https://github.com/OHDSI/Tutorial-ETL/blob/master/materials/Achilles/achillesR un.R



# DataQualityDashboard (DQD)





 Runs a prespecified set of data quality checks and thresholds on the CDM



METADATA
RESULTS
ABOUT

### **DATA QUALITY ASSESSMENT**

#### SYNTHEA SYNTHETIC HEALTH DATABASE

Results generated at 2019-08-22 14:15:06 in 29 mins

|              | Verification |      |       | Validation |      |      | Total |        |      |      |       |        |
|--------------|--------------|------|-------|------------|------|------|-------|--------|------|------|-------|--------|
|              | Pass         | Fail | Total | % Pass     | Pass | Fail | Total | % Pass | Pass | Fail | Total | % Pass |
| Plausibility | 159          | 21   | 180   | 88%        | 283  | 0    | 283   | 100%   | 442  | 21   | 463   | 95%    |
| Conformance  | 637          | 34   | 671   | 95%        | 104  | 0    | 104   | 100%   | 741  | 34   | 775   | 96%    |
| Completeness | 369          | 17   | 386   | 96%        | 5    | 10   | 15    | 33%    | 374  | 27   | 401   | 93%    |
| Total        | 1165         | 72   | 1237  | 94%        | 392  | 10   | 402   | 98%    | 1557 | 82   | 1639  | 95%    |



### 10 Minute Energy Break

Upon your return, please open the ScanReport sent earlier this week. We will work through it in the next session



# White Rabbit



## White Rabbit - Location



|                                             | W                       | hite Rabbit          | _ 🗆 X           |  |  |  |
|---------------------------------------------|-------------------------|----------------------|-----------------|--|--|--|
| Help                                        |                         |                      |                 |  |  |  |
| Locations Sca                               | an Fake data generation |                      |                 |  |  |  |
| Working folder                              |                         |                      |                 |  |  |  |
| C:\ohdsi\WhiteRabbit\WhiteRabbit_v0.8.1\bin |                         |                      |                 |  |  |  |
| Source data location                        |                         |                      |                 |  |  |  |
| Data type                                   |                         | Delimited text files | ▼               |  |  |  |
| Server location                             |                         | 127.0.0.1            |                 |  |  |  |
| User name                                   |                         |                      |                 |  |  |  |
| Password                                    |                         |                      |                 |  |  |  |
| Database name                               |                         |                      |                 |  |  |  |
| Delimiter                                   |                         | ,                    |                 |  |  |  |
|                                             |                         |                      | Test connection |  |  |  |
| Console                                     |                         |                      |                 |  |  |  |
|                                             |                         |                      |                 |  |  |  |
|                                             |                         |                      |                 |  |  |  |
|                                             |                         |                      |                 |  |  |  |
|                                             |                         |                      |                 |  |  |  |
|                                             |                         |                      |                 |  |  |  |
|                                             |                         |                      |                 |  |  |  |
|                                             |                         |                      |                 |  |  |  |
|                                             |                         |                      |                 |  |  |  |



# White Rabbit - Scan



| <b>2</b>            |                      | White Rabbit           |                    | _ D X         |
|---------------------|----------------------|------------------------|--------------------|---------------|
| Help                |                      |                        |                    |               |
| Locations Scan      | Fake data generation |                        |                    |               |
| Tables to scan      |                      |                        |                    |               |
|                     |                      |                        |                    | Add all in DB |
|                     |                      |                        |                    | Add           |
|                     |                      |                        |                    | Remove        |
| ✓ Scan field values | Min cell count       | Max distinct values 1, | 000 Rows per table | 100,000       |
|                     |                      |                        |                    | Scan tables   |
| Console             |                      |                        |                    |               |
|                     |                      |                        |                    |               |
|                     |                      |                        |                    |               |
|                     |                      |                        |                    |               |
|                     |                      |                        |                    |               |
|                     |                      |                        |                    |               |
|                     |                      |                        |                    |               |
|                     |                      |                        |                    |               |



# White Rabbit - Scan



| Mhite Rabbit                                                                  | _ D X         |
|-------------------------------------------------------------------------------|---------------|
| Help                                                                          |               |
| Locations Scan Fake data generation                                           |               |
| Tables to scan                                                                |               |
|                                                                               | Add all in DB |
|                                                                               | Add           |
|                                                                               | Remove        |
| ✓ Scan field values Min cell count 5 Max distinct values 1,000 Rows per table |               |
| Console                                                                       | Coon tobles   |
|                                                                               |               |
|                                                                               |               |
|                                                                               |               |



# Let's open the WR scan



### Other ETL tools

- Excel Macros to Format White Rabbit Scan Report
  - located in OHDSI/sandbox
- Jackalope
- Perseus
- Epic User Web
  - Search "OMOP" as a keyword in the Epic forums

<sup>\*</sup>This is not an exhaustive list. By Googling "OMOP ETL tools" you will find many papers and GitHub repositories devoted to helping you convert your health data to the CDM



### **OHDSI Community Resources**

- GitHub
- forums.ohdsi.org
  - CDM builders
  - Implementers
  - Vocabulary
  - General introduce yourself on the "Welcome to OHDSI" thread