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Why bother with
characterization?



A caricature of the patient journe
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r/ Each observational database is just an
/A (incomplete) compilation of patient journeys
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W Complementary evidence to inform the
/A patient journey

Clinical
characterization:

What happened to
them?

/ observation \

Population-level
effect estimation:

Patient-level
prediction:

What are the
causal effects?

What will happen
to me?

inference causal inference




Questions asked across the patient journey

Which treatment did

patients choose after
diagnosis?

Treatment
Outcome

Conditions

Which patients chose

which treatments? @
Procedures

( Does one treatment
cause the outcome more

than an alternative ?

Measurem How many patients

experienced the outcome
after treatment?

Does treatment cause
outcome?

.
Person  time

What is the probability | will
develop the disease?

What is the probability | will
experience the outcome?
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HADES Spotlight: FeatureExtraction

An R package for ~HADES
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The FeatureExtraction package can be used to create features for a cohort, using the information stored

in the Common Data Model. A cohort is defined a set of persons who satisfy one or more inclusion criteria
for a duration of time. Features can for example be diagnoses observed prior to entering the cohort. Some

people might also re to such features as ‘baseline characteri; or to features in general as ‘covariates’,
and we will use those terms interchangeably throughout this vignette.

This vignette describes how feature an be constructed using the default covariate definitions embedded in
the package. Although these definitions allow quite some ion through predefined it

is possible that someone needs more customization. In this case, the reader is referred to the other vignettes
included in this package that deal with constructing y custom covariates.

This vignette will first describe how to specify which features to comstruct. In many situations,
for example when using FeatureExtraction as part of another package such as CohortMethod or
PatientLevelPrediction, that is all one needs to know about the FeatureExtraction package, as the
actual calling of the package is done by the other package. However, it is also possible to use this package
on its own, for example to create a descriptive characterization of a cohort to include in a paper.

https://github.com/ohdsi/featureextraction




OHDSI Characterization
Framework

* Define a characterization study in terms of:
* Target cohorts (T): those to characterize

* Subgroup cohorts (S): those to use as subgroups of the
target cohort(s)

 Feature cohorts (F): cohorts used to construct features
(outcomes) for characterization

 Time at risk windows: Define windows of time to
characterize all features (F) and concepts




OHDSI’s definition of ‘cohort’

Cohort = a set of persons who satisfy one or more
inclusion criteria for a duration of time

* One person may belong to multiple cohorts

* One person may belong to the same cohort at multiple different time
periods

* One person may not belong to the same cohort multiple times during
the same period of time

* One cohort may have zero or more members

* A codesetis NOT a cohort...

...logic for how to use the codeset in a criteria is required

Cohort = Phenotzge ior a duration of time



OHDSI Characterization
Framework

Target cohort: who do you want to study?

Stratification (pre-index): what subgroups do you
want to study?

Features of interest: what attributes do you want
to look at and describe differences in?

Time-at-risk: what windows of time do you want
to describe features in?




Cohort Diagnostics

Descriptive statistics that provide insight on the
performance of multiple cohort definitions when
applied across data sources

Time
Distribution Index Breakdown

“Before, During or “Triggered Entry”
After”

Cohort Counts Incidence Rate
“Magnitude of “Baseline
difference” expectation”

Visit Context Cohort Overlap
“Patient care “Common vs.
setting” Different”

Temporal Characterization
“Before, On the day of, After”




F/ Incidence Analysis

OHDS
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F/ Cohort Pathways
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OHDSI in action:
Clinical characterization
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Characterizing treatment pathways at scale using the
OHDSI network
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W How are patients with major
/‘ depressive disorder ACTUALLY treated?

W\ 5.18% Citalopram .
oL

Sertraline
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Fluoxetine
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Hripcsak et al, PNAS, 2016



How are patients with major

depressive disorder ACTUALLY treated?
‘ - )
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"» e Substantial variation in

: = treatment practice across
data sources, health systems,
geographies, and over time

* Consistent heterogeneity in
treatment choice as no
source showed one preferred
first-line treatment

-  11% of depressed patients
followed a treatment
pathway that was shared
with no one else in any of the
databases

viazocone

venlafaxne

Hripcsak et al, PNAS, 2016
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What questions does this answer?
What question does it prompt to ask?

S

i Citalopram .

\\\ N Sertraline
Which treatment did \\\\\\\ ‘\\\\\\ Escitalopram -
patients choose after . ‘ Bupropion [l
diagnosis? Fluoxetine [
L venlafaxine .

Does one treatment
cause the outcome more
than an alternative?

Mirtazapine .
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Desvenlafaxine
How many patients @

experienced the outcome Does treatment cause
after treatment? / ‘ outcome
l \\\\\ \\\ corepramine |l

What is the probability | will

experience the outcome? Hripcsak et al, PNAS, 2016

Imipramine .




Demo #1: Incidence of
/ myocardial infarction among
new users of lisinopril in ‘on

’ treatment’ time-at-risk
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F/ Let’s play with ATLAS!
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Exercise: Incidence of
/ angioedema among new users

of lisinopril in ‘on treatment’
time-at-risk
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Extra credit #1: Incidence of
myocardial infarction among
new users of lisinopril in ‘on
treatment’ time-at-risk, within
subpopulations of interest
(age<18, women, Black)



“You’ll never walk

alone on your
OHDSI Journey.”

. FAOHDsI



Questions?
kostka@ohdsi.org

Join the Journey
http://ohdsi.org



mailto:kostka@ohdsi.org
http://ohdsi.org/

