

Machine Learning for Predicting Patients at Risk of Prolonged Opioid Use Following Surgery

Behzad Naderalvojoud, PhD Postdoctoral Research Fellow

Research reported in this publication was supported by the National Library Of Medicine of the National Institutes of Health under Award Number R01LM013362. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Background: opioid use

- High-potency analgesic
- Highly addictive
- Serious complications
- Significant morbidity and mortality
- Risk factor for prolonged opioid use and

Is that feasible to identify postoperative patients at risk for prolonged opioid use based on EHRs?

Background: state-of-the-art

- Solutions:
 - Opioid risk assessment tools
 - ML models
- Problems:
 - Non-standardized data from different sources
 - Generalizability and reliability

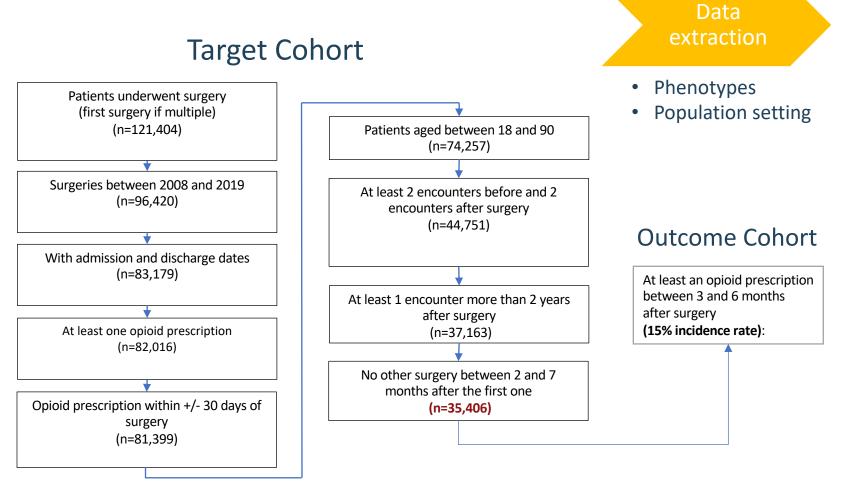
3

- Data bias
- Evaluation bias

Study objective

- Al to identify prolonged opioid users
- Generalizable, discriminating, calibrated AI

A Network Study on OMOP Databases



- ✓ Transparency
- ✓ Standardized model development and evaluation
- ✓ CDM covariates
- External validation

Methods **Observation Window** Time-at-Risk" 180 days Y. Problem definition: 6 Outcome <Opioid Drug Exposure> t=180 t=0 t=90 <Surgery date> Model development components:

Data extraction	Data preprocessing	Model developmen	nt Model validation
 Phenotypes Population setting Covariates Lookback period 	 Observation time Loss to follow-up Sample size Missing data 	 Classifier Hyperparameters Class imbalance Ensemble learning 	 Validation strategy Evaluation measures Recalibration Model updating
•	•	•	•

Phenotyping rules

Phenotyping rules: concept sets

Opioid prescription

RxNorm	Drugs ingredients		
5489	Hydrocodone	Opioid drug	Procedure concepts (5,182)
4337	Fentanyl	concepts	
2670	Codeine	(46,236) (5,182)	(3,102)
3423	Hydromorphone		
6754	Meperidine		
6813	Methadone	Concept	
7052	Morphine	sets	
7804	Oxycodone		
10689	Tramadol		

Covariate and population settings

Data extraction	Data preprocessing	
 Population setting Covariates Lookback period 	 Removing redundant cov. Removing infrequent cov. Normalizing cov. All features (58,405) 180 days prior to surgery 	 Demographics: gender, age group, race, ethnicity Procedure Condition Drug Measurement Condition Era Drug Era Population setting: washoutPeriod = 0, firstExposureOnly = FALSE (because it was considered in the cohort selection), removeSubjectsWithPriorOutcome = FALSE, priorOutcomeLookback = 9999, Procedure count riskWindowStart = 90, startAnchor = cohort start, endAnchor = cohort start, requireTimeAtRisk = TRUE, Drug Group

Model development and evaluation

Implementation:

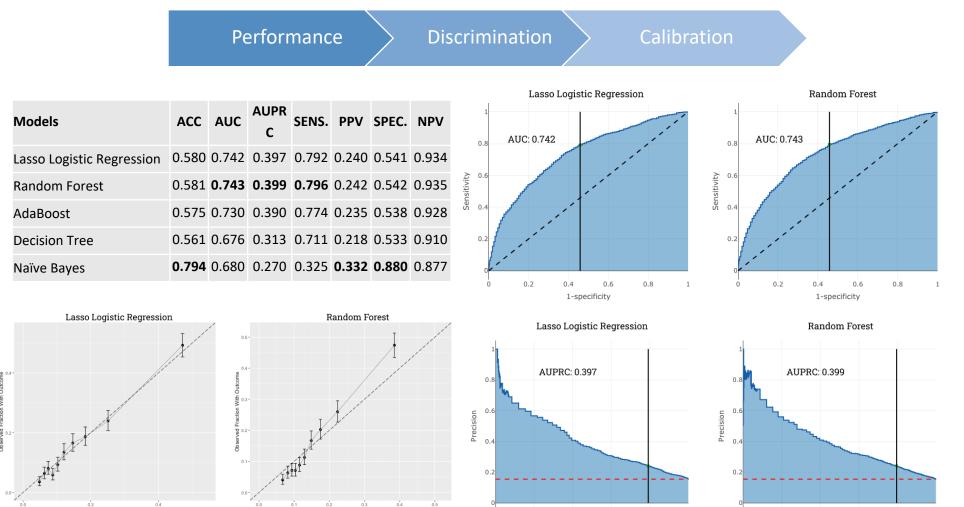
- ATLAS, PLP package 4.0.4
- Shiny app:

https://prolonged-opioid-useprediction.shinyapps.io/shiny-app/ ML models: - Lasso Logistic Regression - Random Forest - AdaBoost - Decision Tree - Naive Bayes

Evaluation metrics: - Model performance: ACC, SENS., SPEC., PPV, NPV - Model discrimination: ROC, PRC, AUC, AUPRC - Model calibration

External validation:

• Codes and study protocol:


https://github.com/ohdsi-studies/PORPOISE

Hyper parameter: 10-fold cross validation with a grid search strategy

Validation strategy:

10-fold cross validation
Random split:
80% train, 20% test
External validation:
PORPOISR study

Results

0.2

0.4

Recall

0.6

Average Predicted Probability

0.0 0.2 Average Predicted Probability

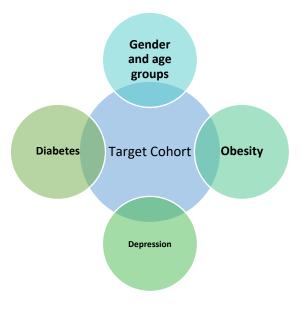
1

0.2

0.4

Recall

0.6


0.8

1

0.8

Conclusion and future work

- Conclusion:
 - LR and RF: Highest discrimination and risk calibration
 - NB: higher specificity
 - LR + NB in a single ensemble model: a better balance of sensitivity and specificity
- Future work:
 - External validation across subgroups
 - Evaluate the transportability 11
 - Ensemble learning
 - Federated learning

Thank you for your attention!

Stanford MEDICINE Center for Biomedical Informatics Research

Behzad Naderalvojoud, PhD Postdoctoral Research Fellow behzadn@stanford.edu

Tina Hernandez-Boussard, PhD MPH, MS, FACMI Project PI boussard@stanford.edu

I would like to thank Tina Seto, Priya Desai, and Dr. Catherine Curtin as collaborators.