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To improve health by 
empowering a community 
to collaboratively generate 
the evidence that promotes 
better health decisions and 

better care.
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Welcome to the second edition of Our Journey. 

This book highlights the  
Observational Health Data Sciences 
and Informatics (OHDSI) journey 
from its inception in 2013—growing 
out of the Observational Medical 
Outcomes Partnership (OMOP)—to 
today. 

Our mission, which we repeat  
often, is to improve health 
by empowering a community to collaboratively generate the 
evidence that promotes better health decisions and better 
care. We have created a community of thousands of collaborators, a federated  
database with approximately 12 percent of the world’s population, models and  
standards for representing that population, and systematic research methods and  
tools that allow us to generate reliable evidence in health care.  

We have turned that system on and begun to produce  
impactful evidence. We have gotten to the point that policy makers like the  
European Medicines Agency and medical influencers as represented in journals like 

Circulation, Hypertension, 
JAMA, Lancet, and BMJ have 
specifically called out  
OHDSI and its studies and 
have demonstrated OHDSI’s 
effect on hundreds of millions 
of people. We’ve proven what 
is possible and helped answer 
some important questions, but 
we are still just at the  
beginning of our journey.

WelCOme leTTer TO The COmmuniTy
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 With a systematic  
approach to observational 
research and an extensive 
international data network, 
we can contribute 
much more broadly 
across medicine.

How have we gotten 
here, and how can we 
continue to contribute? 
Leadership is the foundation of any initiative, and OHDSI is 
blessed with many leaders. OHDSI has done a good job in finding leaders 
rather than bosses. The mark of a successful group is that it seems to lead itself (see, 
for example, the Tao of Leadership). Leaders inspire, set examples, and give credit. 
Put another way, quoting informatician Paul Clayton, we encourage leaders who are 
nice, bright, and hardworking. Our leaders are a diverse group, pulling 
from nations around the world; pulling from industry, academia, 
and government; and pulling from all career stages from  
undergraduate to senior figures.

To foster our open-science community and to improve transparency, OHDSI has 
shifted most of its work from informal arrangements to formal 
workgroups. OHDSI workgroup leaders have donated their time, creativity, and 
skills to advance observational research, and OHDSI has more consciously moved to 
support them through workgroup leadership summits and workshops. Thanks to Paul 
Nagy and colleagues for being leaders among leaders.

OHDSI recognizes leadership through its annual Titan Awards, which go to those in 
the community who have contributed greatly in the previous year. The awards include 
a specific award for Community Leadership, but all our Titan winners are leaders, and 
our leadership bench includes many more than we can give awards to.

WelCOme leTTer TO The COmmuniTy
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WelCOme leTTer TO The COmmuniTy

To keep OHDSI healthy, we must  
expand our leadership as OHDSI 
grows. OHDSI is therefore looking to find 
and grow new leaders, especially from its junior 
ranks. We are an open-science initiative and  
everyone is welcome.

Leadership also refers to OHDSI’s mission- 
driven responsibility in the field, which is to pull 
research to be more rigorous and trusted. I use 

“pull” on purpose, as research must be pulled 
forward. You pull towards yourself 
and push away from yourself, and 
OHDSI must set the standard for 
rigorous research, encouraging 
the broader research community 
to do the same.

George Hripcsak
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II. 
OHDSI 

Mission and
Values
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OhDsi missiOn anD Values

OHDSI Mission
To improve health by empowering a community to collaboratively generate 

the evidence that promotes better health decisions and better care.

OHDSI Vision
A world in which observational research produces a comprehensive  

understanding of health and disease.

OHDSI Values
Innovation: Observational research is a field which will benefit greatly  

from disruptive thinking. We actively seek and encourage fresh  
methodological approaches in our work.

Reproducibility: Accurate, reproducible, and well-calibrated evidence  
is necessary for health improvement.

Community: Everyone is welcome to actively participate in OHDSI,  
whether you are a patient, a health professional, a researcher,  

or someone who simply believes in our cause.

Collaboration: We work collectively to prioritize and address the  
real-world needs of our community’s participants.

Openness: We strive to make all our community’s proceeds open  
and publicly accessible, including the methods, tools  

and the evidence that we generate.

Beneficence: We seek to protect the rights of individuals  
and organizations within our community at all times.
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How OHDSI Works

Observational Health Data  
Sciences and Informatics (OHDSI, 
pronounced “Odyssey”) strives to 
promote better health decisions 
and care through globally  
standardized health data,  
continuously developing large-
scale analytics and a spirit of  
collaboration though open science.

Founded in 2014, OHDSI is a growing collaborative of more than 3,200 researchers 
across disciplines (including biomedical informatics, epidemiology, statistics, computer 
science, health policy, clinical sciences), across stakeholders (including academia, 
industry, government and regulatory authorities, and health providers), and across  
geographies (including 80 countries and six continents). OHDSI also has established 
an international distributed data network that applies one open community data  
standard and collectively contains data for more than 928 million patients around the 
world, and has produced a suite of open-source software packages that enables the 
community to translate that data into reliable evidence.

OHDSI collaborates to establish open community data standards, develop open 
source software, conduct methodological research, and apply best practices across 
the OHDSI data network to generate clinical evidence.  The OHDSI distributed data 
network is comprised of data partners who standardize their source data through an  
extract-transform- 
load (ETL) into 
the OMOP  
Common Data 
Model (CDM) and 
apply OHDSI 
open-source 
tools securely 
behind their own 
firewall.  

OHDSI network 
studies involve 
researchers 
collaborating to 
design analyses 
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with pre-specified protocol and analysis code which can be executed across the  
OHDSI data network, allowing aggregate summary statistics (but no patient-level data) 
to be shared and collectively interpreted and disseminated.  

OHDSI’s research has been presented across various scientific societies, such as 
American Medical Informatics Association (AMIA), American Statistics Association 
(ASA/JSM), and International Society of Pharmacoepidemiology (ISPE), and published in 
top medical journals, including The Lancet, JAMA, BMJ, PNAS and JAMIA.

Our growing 
global community 
is always seeking 
new collaborators.  

Please learn 
more about  
OHDSI through 
this publication 
and Join The Journey!

OhDsi missiOn anD Values

The Department of Biomedical 
Informatics at Columbia  
University (DBMI) serves as 
the coordinating center for the 
OHDSI community. 

Located on the Columbia University 
Irving Medical Center campus, DBMI is 
both an academic department and an 
information services partner to  

NewYork-Presbyterian Hospital, a major healthcare provider in greater New York.
One of the oldest informatics departments in the nation, faculty and students at DBMI 

have set the path for design of clinical information systems, methodologies in clinical  
natural language processing, and machine learning over electronic health record data.  
Faculty research includes the development and evaluation of innovative information  
technologies, which has led to enhancements in both health and healthcare. 

Both faculty and students work in a highly collaborative environment, applying  
informatics from the atomic level to global populations.

Photo by Odelia Ghodsizadeh/CUIMC
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III. 
OHDSI 

Collaborators
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OhDsi COllabOraTOrs

Map of CollaboratorsMap of Collaborators
The OHDSI community brings together volunteers from around the world to  

establish open community data standards, develop open-source software,  
conduct methodological research, and apply scientific best practices to  
both answer public health questions and generate reliable clinical evidence.

* as of August 1, 2021

OHDSI By The Numbers

• 3,266 collaborators
• 80 countries
• 21 time zones
• 6 continents
• 1 community
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Our community is ALWAYS seeking new collaborators. Do you want to focus on data 
standards or methodological research? Are you passionate about open-source  
development or clinical applications? Do you have data that you want to be part of 
global network studies? Do you want to be part of a global community that truly values 
the benefits of open science? Add a dot to the map below and JOIN THE JOURNEY!
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Organizations Involved With OHDSIOrganizations Involved With OHDSI
OHDSI is a global community of collaborators. Many of the individuals  

represent organizations who contribute to and benefit from their participation 
in the OHDSI community. OHDSI is proud to collaborate with the more than 400 
organizations listed below, and looks forward to other organizations joining 
the journey as well.
2Ca-Braga • Aarhus University • AbbVie • Advocate Aurora Health • Agenzia Di Tutela Della Salute Della Provincia Di 
Bergamo • Ajou University Hospital • Akrivia Health • All Of Us Research Program • Allscripts • AMC Medical Research BV 
• Amgen • Andrija Štampar School Of Public Health • APDP Diabetes Portugal • Arcadia Inc • ARS Toscana • Asan 
Hospital • ASCO CancerLinQ • Asociación Instituto De Investigación Sanitaria Biocruces Bizkaia • Assistance Publique - 
Hopitaux De Paris / Aphp • Assistance Publique Hopitaux De Marseille • Astellas Pharma • AstraZeneca • ASU •  
AU-EPBRN • AUS Dept of Veterans Affairs • AWS • Az Delta Vzw • Az Klina • Azienda Ospedaliera Nazionale Ss. Antonio 
E Biagio E Cesare Arrigo Alessandria • Azienda Ospedaliera Universitaria (Aou) Di Modena • Azienda Ospedaliera 
Universitaria Integrata Verona • Azienda Unità Sanitaria Locale-Irccs In Reggio Emilia • B2I Healthcare • Barts Health 
NHS Trust • Bayer AG • BCB Medical Oy • Beijing Safe House • Ben-Gurion University • Berlin Institute of Health • Bill & 
Melinda Gates Foundation • Boehringer Ingelheim • Booz Allen Hamilton • Bordeaux Hospital • Boston Medical Center • 
Bradford Teaching Hospitals NHS Foundation Trust • Brazilian MOH • Brown University • Bucheon Hospital • Buddhimed 
Technologies • Caliber • Cancerdatanet Gmbh • Carilion Clinic • Carnegie Melon in Qatar • Case Western CICB • Catholic 
University of Korea Seoul St. Mary’s Hospital • Catholic University of Korea Yeouido St. Mary’s Hospital • CDPHP • 
CEEISCAT (Catalonia) • Cegedim Health Data • Centre Hospitalier Universitaire De Lille • Centre Hospitalier Universitaire 
De Toulouse • Cerner • Cha University Bundang Medical Center • Charité - Universitätsmedizin Berlin • CHCO (USA) • 
Cherokee Health Systems • Children’s National • CHLA (USA) • Chonnam National University Hospital • CHOP (USA) • 
CHU Montpellier • Clínica Alemana de Santiago • Clinical Center of Serbia • Clinical Centre of Nis • Cognizant • Columbia 
University • Columbia University Irving Medical Center • CRHFEI • CSS Denmark • Daegu Catholic University Hospital • 
Data Integration Centre University Hospital Carl Gustav Carus Dresden • data4life • Databricks • Datasus Ambulatory • 
DFCI • DHS Los Angeles • DNAnexus • Dongguk University Ilsan Hospital • Dresden University Of Technology • DRG • 
Drug Safety Research Unit • Duke • Eau Claire Cooperative Health Center • EBMT (EU) • EGCUT • EHDEN • EISBM 
(Europe) • Eli Lilly & Company • Ephir Inc. • Erasmus MC • European Medicines Agency • Evidera • Evidnet • Ewha 
Womans University Mokdong Hospital • FIBH12O • FinnGen • Flatiron • Fondazione IRCCS Ca’ Granda Ospedale  
Maggiore Policlinico • Fondazione IRCCS Istituto Nazionale Dei Tumori • Fondazione IRCCS Policlinico “San Matteo” • 
Fondazione Poliambulanza • Fred Hutch Cancer Center • Freyr Ltd • Fudan University • Fujitsu • Fundacio Institut  
D’Inves72tigacions Mèdiques • Fundación Rioja Salud • FUS • GA4GH • Gacheon Gil Hospital • Galilee Medical Center • 
Gangbuk Samsung Hospital • Gangdong Sacred Heart Hospital • Gangnam Severance Hospital • Geisinger • General 
Hospital Of Kavala • Georgetown/MedStar Health • Getrude’s Children Hospital • Glsmed Learning Health • Google • 
Great Ormond Street Hospital NHS Foundation Trust • GlaxoSmithKline • Georgia Tech Research Institute • George 
Washington University • Hanover Medical School (Germany) • Hanyang University Hospital • Harvard • Harvey Walsh Ltd 
• Hasselt University • HealthVerity • Hebei Mental Health Center • Helix • Helsinki UH CCC Hematology • Hierarchia 
D.O.O. On Behalf Of University Hospital Centre Zagreb • Health Insurance Review and Assessment Service • HL7 • HM 
Hospitals • HMAR • Hospital District Of Southwest Finland (Varsinais-Suomen Sairaanhoitopiiri) • Hulafe (Spain) • Hus 
Datalake Ecareforme Poc • Hwasun Chonnam National University Hospital • IBM T.J. Watson Research Center • Ican 
School Of Medicine At Mount Sinai • ICON • ICVS (Portugal) • IDIAPJGOL / SIDIAP • Idival • IMASIS • Imperial College Of 
Science Technology And Medicine • Incheon Sejong Hospital • Indian Society for Clinical Research • Indiana University 
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OhDsi COllabOraTOrs

School Of Medicine • Inha University Hospital • Innovative Medical Research SA • Inova Health • Institute of Applied 
Biosciences • Int’l Uni of Health And Welfare • Integraal Kankercentrum Nederland • Intermountain Healthcare • IQVIA • 
IRST (Italy) • Istanbul Universitesi • Istanbul Universty-Cerrahpasa • Janssen R&D • Janssen Scientific Affairs • Jayne 
Koskinas Ted Giovanis Foundation • Jiangxi Province • Johns Hopkins University • Johnson & Johnson • Juntendo Uni 
SOM • Kangwon National University Hospital • Karolinska Institutet • Keck Medicine (USC) • Khoo Teck Puat Hospital • KI 
Research Institute • King Saud University Medical City • King’s College London • Kliničko-Bolnički Centar Zvezdara • 
Knight Cancer Institute • Konkuk University Hospital • Konyang University Hospital • Korea Advanced Inst of Sci and Tech 
• Korea University Anam Hospital • Korea University Ansan Hospital • Korea University Guro Hospital • Kyoto University • 
Kyunghee University Hospital • Kyunghee Medical Center • Kyungpook National University Hospital • Kyushu University 
Hospital, Japan • Leeds Teaching Hospitals NHS Trust • Leiden MC • LIH (Luxembourg) • Loyola University (NOLA) • LTS 
Computing LLC • Lundbeck • Lynxcare Clinical Informatics NV • M2GEN • MaineHealth • Marina Salud S.A. • Mass 
General Brigham • Mayo Clinic • MDV (Japan) • Medaman BV • mederrata • Medibloc • Merck • Microsoft • MIT • MITRE • 
Momentum AD • Montefiore/AECOM • MS Urban Research Center • MSFP-gGmbH • MSKCC • MSU (MT) • MTPPI • MU 
Vienna • MUSC / HSSC • Myongji Hospital • Nanfang Hospital • National Cancer Center • National Cancer Hospital East • 
National Health Insurance Corporation Ilsan Hospital • National Institute of Public Health (Japan) • National University of 
Hospital (SG_NUH) • NCQA • Nemours • NHIRD • NICE • Northshore • Northwell Health • Northwestern Med • Novartis • 
Novo Nordisk Inc. • NYU Langone • Odysseus Data Services • OHSU • Okayama University • Oklahoma U • Optimum 
Patient Care Limited • OSU Medical Center • Outcomes Insights • Oxford • Pareto Intelligence • Paxata • Pedianet • 
PEDSnet • Peking Union Medical College Hospital • Penn State • PhysioNet • PicnicHealth • Pirkanmaa Hospital District • 
Plateforme De Données De Santé • Policlinico San Donato S.P.A. • Portuguese Institute of Oncology of Porto • Premier 
Healthcare • PSMAR (Barcelona) • PSSJD • Pusan   National University Hospital • Queen Mary University Of London • 
RCGP (UK) • Regeneron • Regenstrief Institute • Reliant Medical Group • Roche • Rush UMC • Rutgers • RWJ Barnabas • 
Sage Bionetworks • SAIL Databank • Samsung Seoul Hospital • Sanford Health • Sanofi • Saudi FDA • SBU (USA) • 
Semantix • Semmelweis Egyetem • Seoul National University Bundang Hospital • Seoul National University Hospital • 
SERMAS & FIIBAP • Severance Hospital • Shuanghe Hospital • Siemens Health Services • SIMG (Italy) • SNOMED CT • 
Snowflake • Soonchunhyang University Hospital • Spectrum Health • Spok • St. Luke’s (Idaho) • Stanford University • 
Stichting Integraal Kankercentrum Nederland • STIZON • Sydney LHD • Taipei Medical University Affiliated Hospital • 
Taipei Municipal Wanfang Hospital • Takeda • Technical University Sofia • The Hyve • The Roux Institute at Northeastern • 
The University Court Of The University Of Edinburgh • Tokyo University • Tianjin Anding Hospital • tranSMART • TrialSpark 
• Tufts • Tulane • U Copenhagen • U Dundee • U Gothenburg • U Hong Kong • U IL Chicago • U Minho • U São Paulo 
Medical School • U South Australia • U Tartu • U Tsukuba • U Utah • U Witwatersrand • UA-Birmingham • UArkansas • 
UBuffalo • UColorado Health • UColorado-Anschutz Medical Campus • UCalgary • UChicago • UCincinnati • UCL (UK) • 
UCLA • UCSF • UFlorida Health • UH Geneva • UHG (USA) • UIO • University of Iowa • UK Biobank • UK-CRIS •  
UKentucky • UKER • Ulsan University Hospital • U Mass Memorial MC • UMC New Orleans • UMessina • University of 
Miami • University of Michigan • UMichigan School of Dentistry • University of Minnesota • University of Mississippi MC • 
UNC Chapel Hill • Unidade Local De Saúde De Matosinhos Epe • Université De Bordeaux • Université De Genève • 
University College London Hospitals NHS Foundation Trust • University of Pécs • UNMC • UNew Mexico • UNSW Medi-
cine Australia • UPennsylvania • UPittsburgh • URochester • US Department of Veterans Affairs • US Department of 
Defense • US Food & Drug Administration • US National Cancer Institute • US National Institutes of Health • US National 
Library of Medicine • USAID • USC (LA) • UTexas-Austin • UTexas-Houston • UTHCS-Houston • UTMC • UVirginia • 
UWashington (Seattle) • UWisconsin-Madison • Vall D’Hebrón Hospital Campus • Vanderbilt • VCU • Veradigm • Vertex • 
Vivante Health Software • Vrije Universiteit Amsterdam • Wake Forest • Wanfang Hospital • Washington University • 
WashU St Louis • Weill Cornell Medical Center • WHO Uppsala Monitoring Centre • Winship Cancer Institute of Emory 
University • WMichigan USOM • Wonju Severance Hospital • Wonkwang University Hospital • WVU • Yale • Yongin 
Severance Hospital • Yonsei University • ZOL (Belgium) • ZS Associates
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Testimonials From The
OhDsi COllabOraTOrs

There is a say-
ing in Chinese 
— 酒香不怕巷子
深 — which could 
be translated 
into ‘Good wine 
needs no bush’. 
I really think the 

reason is because 
OHDSI has great  
methodologies, tools, and community 
support, which are making more 
and more people adopt OMOP and 
join the community.

Jing Li
Associate Director of Data Science at IQVIA

The values, goals, and people of OHDSI I find incredibly inspiring. The 
people in OHDSI are highly talented, practical, and collegial.  They are 
always welcoming new people on the journey. OHDSI is a multi- 
disciplinary community pushing the boundaries of computational  
observational research so there is always something new to learn. The 
values of being transparent in our methods and in our software resonate 
with me in trying to make a lasting impact. I get energized from going to 
OHDSI meetings because I always meet new people, learn new things, 
and am part of making a difference in improving healthcare.

Paul Nagy
Program Director for Graduate Training in Biomedical Informatics and Data Science and Deputy Director of 
the Johns Hopkins Medicine Technology Innovation Center

There is a lot of energy and good will in the community. It is open,  
inclusive, and extremely diverse. I get my energy from the community. The 
enthusiasm and drive to do the right thing and to improve human lives and 
the possibility to work with such a diverse group of individuals and learn 
from them excites me and pushes me to do more. I am extremely proud to 
be a part of this effort.

Asieh Golozar
VP, Global Head of Data Science at Odysseus Data Services, Inc. and Professor of the  
Practice & Director of Clinical Research at the OHDSI Center, Northeastern University

I often sit in those teleconferences 
(often late at night or in the wee 
hours of the morning here in  
Australia) and marvel at the  
discoveries and new insights that 
are shared so openly, the light bulb 
moments that lead to fabulous  
discoveries! The work that has been 
generated in LEGEND and  

EUMAEUS is important clinically. It can help update 
clinical guidelines and provide robust evidence for 
medicine regulators – but for me these landmark 
studies have also provided critical insights into which 
methodologies are appropriate under which condi-
tions – especially the value of empirical calibration!

Nicole Pratt
Professor at University of South Australia
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OHDSI Community

In OHDSI I have found an inter-
disciplinary community dedicated 
to making the best use of routinely 
collected healthcare data to find 
better treatments for diseases that 
have greatly affected some of my 
closest friends and family mem-
bers. My journey in OHDSI has 
taken me from being an inspired 

spectator to co-leading the Open Source Commu-
nity workgroup with Paul Nagy. Together we are 
growing OHDSI’s open-source software ecosystem 
and the next generation of OHDSI developers. 
Contributing to OHDSI open-source software has 

been a longtime goal for me and now that it’s part 
of my day job I can say that contributing to open 
source is more rewarding than I ever thought it 
could be. The problem with OHDSI is that there are 
too many amazing projects and people to keep up 
with, and that’s a good problem to have.

Adam Black
Data Scientist at Odysseus Data Services, Inc.

Although 2020 was a challenging year for most, due to COVID-19, I will  
remember it for another significant experience as well: the beginning of my 
collaboration with the OHDSI community. I had the pleasure to participate in 
scientific research, symposiums, and other collaborative ventures and meet 
several Titans of the community in person.
ETHONs are a perfect example of how the collective effort of motivated 

and proactive people can contribute to a greater cause. Thanks to ETHONs 
and the cooperation with the University Clinical Center of Serbia, I had the 
opportunity to get better acquainted with the OHDSI toolset and the open-source  
community around it. In addition, observational studies in which I participated gave me and 
my colleagues valuable insights and new perspectives for future projects. Through efforts 
like these, OHDSI enables underrepresented populations to be exposed and contribute to  
scientific and medical evidence.
After a short time in the community, I felt really comfortable within it and I think it’s very easy to 

advance in it. OHDSI is a community of visionary, forward-looking and persistent people, and 
their efforts motivate me to improve my skills and contribute more to the community. 

Filip Maljković 
Lead Programmer at Heliant Starting my PhD  

right before the  
pandemic started, I 
got to see the OHDSI 
community in full  
action right away 
during the COVID-19 
study-a-thon. Still 
today, I’m impressed 
to see so many people from different 
backgrounds and disciplines work 
together towards a shared goal. 
OHDSI’s friendly, supportive and  

collaborative culture is something I  
especially appreciate as an early- 
career researcher. 
Furthermore, being able to perform 

studies on real-world data using the 
OMOP CDM, thereby re-using tools 
others created, is a researcher’s 
dream come true!

Aniek Markus
PhD Candidate, Erasmus MC
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The Titan Awards
To recognize OHDSI collaborators (or collaborating institutions) for their  

contributions towards OHDSI’s mission, the OHDSI Titan Awards were 
introduced at the 2018 Symposium and will be awarded for a fifth consecutive 
year at the 2022 Symposium.

Annually, community members are invited to nominate individuals or  
institutions they feel have made significant contributions towards advancing 
OHDSI’s mission, vision and values. Once nominations are submitted, the  
OHDSI Titan Award Committee selects the award winners, and the honorees 
are announced at the annual symposium.

The award categories, as well as all previous recipients, are listed here.

Data Standards
This Titan Award recognizes  
extraordinary contributions by an  
individual, organization, or team in  
development or evaluation in  
community data standards,  
including OMOP common data  
model and standardized vocabularies

2021 – Maxim Moinat, The Hyve/
Erasmus University Medical  
Center
2020 – Clair Blacketer, Janssen 
Research and Development
2019 – Oncology Workgroup 
(Michael Gurley, Northwestern 
University; Rimma Belenkaya, 
Memorial Sloan Kettering Cancer Center; Robert 
Miller, Tufts CTSI)
2018 – Vocabulary team (Christian Reich, IQVIA; 
Anna Ostropolets, Columbia University; Dmitry 
Dymshyts, Odysseus Data Services)

Methodological
Research

This Titan Award recognizes  
extraordinary contributions by an  
individual, organization, or team in  
development or evaluation in analytical 
methods for clinical characterization, 
population-level effect estimation, or 
patient-level prediction

2021 – Yong Chen, University of 
Pennsylvania
2020 – Nicolas Thurin, Université 
de Bordeaux
2019 – Jenna Reps, Janssen 
Research and Development
2018 – Martijn Schuemie,  
Janssen Research and  
Development; Marc Suchard, University of  
California, Los Angeles

Yong Chen
2021 honoree

Maxim Moinat
2021 honoree
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Clinical 
Applications

This Titan Award recognizes  
extraordinary contributions by an 
individual, organization, or team in 
generating clinical evidence that 
improves health by informing better 
health decisions and better care
2021 – Asieh Golozar, 
Odysseus Data Services
2020 – Jenny Lane, University 
of Oxford
2019 – Oxford Study-A-Thon 
(Dani Prieto-Alhambra, University 
of Oxford; Edward Burn, 
University of Oxford; Jamie 
Weaver, Janssen Research and Development; 
Ross Williams, Erasmus University Medical Center)
2018 – Seng Chan You, Ajou University

Asieh Golozar
2021 honoree

Open-Source
Development

This Titan Award recognizes  
extraordinary contributions by an  
individual in design, development, 
testing, and deployment of  
open-source software to enable  
observational analyses
2021 – Adam Black, Odysseus 
Data Services
2020 – Anthony Sena, Janssen 
Research and Development
2019 – Pavel Grafkin, 
Odysseus Data Services
2018 – Christopher Knoll, 
Janssen Research and  
Development

Adam Black
2021 honoree
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Community 
Collaboration

This Titan Award recognizes  
an individual for their collaborative 
spirit in helping their fellow 
community members reach their 
goals.

2021 – Erica Voss, Janssen 
Research and Development
2020 – Talita Duarte-Salles, 
IDIAPJGol
2019 – Andrew Williams, Tufts 
Medical Center
2018 – Kristin Kostka, Deloitte; 
Mui Van Zandt, IQVIA

Erica Voss
2021 honoree

Mui Van Zandt
2021 honoree

OhDsi COllabOraTOrs

Community 
Support

This Titan Award 
recognizes an individual, 
team, or organization 
for their contributions to 
ensuring the  
sustainability of the 
OHDSI community.
2021 – Faaizah Arshad, UCLA; 
Ross Williams, Erasmus Univer-
sity Medical Center
2020 – COVID-19 Support 
Team, Erasmus University 
Medical Center
2019 – James Wiggins, Amazon 
Web Services
2018 – Lee Evans, LTS Computing LLC

Ross Williams
2021 honoree

Faaizah Arshad
2021 honoree

Community 
Leadership

This Titan Award recognizes  
an individual for their leadership in 
advancing the OHDSI mission.

2021 – Mui Van Zandt, IQVIA
2020 – Dani Prieto-Alhambra, 
University of Oxford
2019 – Peter Rijnbeek, Eras-
mus University Medical Center
2018 – Rae Woong Park, Ajou 
University School of Medicine

Mui Van Zandt
2021 honoree
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Collaborative

Activities
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OHDSI WorkgroupsOHDSI Workgroups
OHDSI’s central mission is to improve health by empowering a community to 

collaboratively generate the evidence that promotes better health decisions and 
better care. We work towards that goal in the areas of data standards,  
methodological research, open-source analytics development, and clinical  
applications.

There are currently 27 active working groups that present opportunities for 
all community members to find a home for their talents and passions, and to 
make meaningful contributions. We are always looking for new collaborators.

See an area where you want to contribute? Please Join The Journey!

APAC (Asia-Pacific)
Current Participants: 289

Lead: Mui Van Zandt

Common Data Model
Current Participants: 596

Lead: Clair Blacketer

Education
Current Participants: 116

Lead: Nigel Hughes

Geographic 
Information System (GIS)

Current Participants: 122
Leads: Robert Miller,

Andrew Williams

Healthcare
Systems

Current Participants: 430
Lead: Melanie Philofsky

ATLAS/WebAPI
Current Participants: 226

Lead: Anthony Sena

Data Quality
Dashboard Development

Current Participants: 260
Lead: Clair Blacketer

Eye Care & 
Vision Research
Current Participants: 40

Leads: Sally Baxter, Kerry Goetz

HADES 
(Health Analytics 

Data-to-Evidence Suite)
Current Participants: 262
Lead: Martijn Schuemie

Latin America
Current Participants: 48

Lead: Jose Posada

Clinical Trials
Current Participants: 252

Leads: Mike Hamidi, Lin Zhen 

Early-Stage
Researchers

Current Participants: 214
Leads: Faaizah Arshad, 

Ross Williams

FHIR and OMOP
Current Participants: 214

Leads: Jon Duke, Christian Reich, 
Dana Stephenson

Health Equity
Current Participants: 201

Lead: Jake Gillberg

Medical Devices
Current Participants: 130

Leads: Vojtech Huser, 
Asiyah Lin
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Our workgroups hold meetings, share files, chat asynchronously and more in the OHDSI 

Microsoft Teams environment. Collaborators can request access to any workgroup through  
an online form available on both OHDSI.org and our main OHDSI Microsoft Teams environment.

Want to learn more? Check out our homepage: ohdsi.org/ohdsi-workgroups

Medical Imaging
Current Participants: 114

Leads: Paul Nagy, Seng Chan You

Open-Source
Community

Current Participants: 118
Leads: Adam Black, Paul Nagy

Population-Level
Effect Estimation
Current Participants: 355
Leads: Martijn Schuemie,

Marc Suchard

Steering Group
Current Participants: 70

Lead: Patrick Ryan

Natural Language
Processing

Current Participants: 379
Lead: Hua Xa

Patient-Level
Prediction

Current Participants: 355
Leads: Jenna Reps, Ross Williams

Psychiatry
Current Participants: 115
Leads: Dmitry Dymshyts, 

Andrew Williams

Surgery and 
Perioperative Medicine

Current Participants: 37
Lead: Evan Minty

Oncology
Current Participants: 241

Lead: Asieh Golozar

Phenotype 
Development & Evaluation

Current Participants: 249
Lead: Gowtham Rao

Registry
Current Participants: 115

Lead: Tina Parciak

Vaccine Vocabulary
Current Participants: 76

Lead: Adam Black

OHDSI Regional 
Chapters

Africa
Current Participants: 66

Lead: Nega Gebreyesus

An OHDSI regional chapter represents 
a group of OHDSI collaborators located 
in a geographic area who wish to hold 
local networking events and meetings 
to address problems specific to their 
geographic location.

Australia
Current Participants: 74

Lead: Nicole Pratt

China
Current Participants: 228

Lead: Hua Xu

Europe
Current Participants: 321

Lead: Peter Rijnbeek

India
Current Participants: new

Lead: Swetha Kiranmayi 
Jakkuva

Japan
Current Participants: 49

Lead: Tatsuo Hiramatsu

Korea
Current Participants: 55

Lead: Seng Chan You

Singapore
Current Participants: 58

Lead: Mengling Feng

Taiwan
Current Participants: 71

Lead: Jason Hsu
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The weekly OHDSI community call is where our global network gathers  
together to share research, discuss various topics around observational health, 
keep apprised on community updates, and plenty more. Our weekly calls take 
place on Tuesdays at 11 am ET and are led by Craig Sachson, and they are both 
recorded and posted to both OHDSI.org and within our Teams environment. 

These pages highlight just a few of the meeting topics from 2022; please  
check out ohdsi.org/community-calls to learn more about these interactive  
community gatherings.

OHDSI Community CallsOHDSI Community Calls
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How Can You Join Our Calls?How Can You Join Our Calls?
If you are a part of the OHDSI Teams  

environment, you will receive a weekly  
calendar invite that includes the upcoming 
agenda. If you don’t have access, the link is 
on our Community Calls page, which features 
all recordings and updates from past calls.
Weekly calls are currently held on Tuesdays 

at 11 am ET. Learn more at our website!
www.ohdsi.org/community-calls
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OHDSI Study-A-Thons & Other EventsOHDSI Study-A-Thons & Other Events
How does OHDSI go about empowering a community to collaboratively  

generate the evidence that promotes better health decisions and better care?  
We do it by innovating on what it means to do collaborative research.  
The premise of the study-a-thon is simple: bring together a diverse group of  

researchers aligned on a common question and focus together on  
collaboratively designing research protocols, executing analyses across  
databases, and interpreting results over an intense but fun-filled few days.  

OHDSI collaborators have held multiple study-a-thons on a wide array of 
topics, including orthopedic surgery, rheumatoid arthritis, colorectal cancer, 
cardiovascular prediction, prostate cancer, and COVID-19. Each event has 
demonstrated our collective ability to accomplish in a short time what may be 
unimaginable alone, and it has provided further reinforcement of the power of 
community and the value of multi-disciplinary collaboration.

2020 Barcelona study-a-thon, which focused on rheumatoid arthritis

2022 Sweden EHDEN study-a-thon, which focused on pharmacovigilance 
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2018 Oxford study-a-thon, which focused on knee replacement surgery

2022 Korea Datathon, which focused on several research questions

2022 Center for Surgical Science analyses in colorectal cancer, held in Kusadasi, Turkey 
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88 Hours: OHDSI’s Signature Moment88 Hours: OHDSI’s Signature Moment
The time was originally meant for highlighting OHDSI  

capabilities, not testing them.
The hours were meant for sharing global research, not  

sharing in global research.
The Observational Health Data Sciences and Informatics 

(OHDSI) community held a COVID-19 global, virtual study-
a-thon March 26-29, 2020, believing that a network of people 
who valued both collaboration and open science could make 
a meaningful impact on the current global pandemic.

How? Nobody was quite sure in the moment, but they were 
confident they would figure it out.

“We chose an ambitious path and relied on our community 
and infrastructure to lead the way,” said Patrick Ryan, Vice 
President of Observational Health Data Analytics at Janssen 
Research and Development. “In simple terms, efforts within 
our community over the past 88 months set the foundation 
for OHDSI’s most important and impactful 88 hours.”

The OHDSI community, by definition, is a multi-stakeholder,  
interdisciplinary collaborative to bring out the value of 
health data through large-scale analytics. In plainer terms, 
it’s a community of people who volunteer their time and  
talents for the shared goal of improving healthcare through  
observational research.

A global network of OHDSI colleagues planned to  
celebrate recent research initiatives and discuss future  
efforts during the annual European Symposium at Oxford  
University in late March of 2020. The symposium was canceled 
due to the rapidly spreading COVID-19 virus; in its place, the 
organizing committee planned a study-a-thon, which OHDSI 
has experienced significant success with several times over.

The twists?
The COVID-19 data was limited (a significant issue for 

an observational data science network), the needs were  
immediate, and everybody was staying home.

Those factors would be a hard stop to most, but the  
virtual OHDSI community has thrived on overcoming  
obstacles, and there was never a more crucial time to do so 
again.

Daniel Prieto-Alhambra, Professor of Pharmaco- and  
Device Epidemiology at Oxford, remembers his OHDSI  
conversion occurring during one of the afore-mentioned 
study-a-thon events in 2018. This one had nothing to do 
with viruses or antibodies; it was about the safety profile of  
varied knee replacement procedures and ultimately  

produced a paper published in Lancet Rheumatology.
While that data didn’t affect COVID studies 15 months 

later, the impact of the event stayed with Prieto-Alhambra. 
He presented on it during the 2019 U.S. Symposium, led 
another one in Barcelona to focus on rheumatoid arthritis 
and volunteered to host the global community for the 2020 
European Symposium.

“We were thrilled to bring the OHDSI community to  
Oxford, and we were excited about some new aspects,  
including new tutorials,” Prieto-Alhambra said. “It was  
crushing to cancel it in the moment, but we quickly looked 
ahead and saw an opportunity to make the most of our time 
and talents. From that moment, we never looked back.”

88 hours.
That was the time between the global kickoff and  

closing calls, both of which have combined for more 
than 2,300 views on YouTube (the entire set of calls 
and presentations is available at the OHDSI COVID-19  
research page). More than 330 people from at least 30  
nations registered to collaborate in the event, offering their 
services in areas like literature review, protocol development, 
study execution, etc.

Peter Rijnbeek, Associate Professor Health Data  
Science at the Erasmus University Medical Center in the  
Netherlands, has a history of bringing together leaders in  
observational health data science. He hosted the 2019 
OHDSI European Symposium, and is leading the  
recently created EHDEN consortium, which is building a 
large-scale, federated network of European data sources for 
the discovery and generation of real-world evidence.

He took a leadership role once again; his Erasmus team 
set up the Microsoft Teams virtual platform and created 17 
different teams that held varied roles throughout the event.

This setup, for example, enabled a group focused on 
phenotype development to work collaboratively, while 
also having the ability to connect with teams inside the  
characterization, estimation and prediction groups as well. 
When needed, there were support teams for literature  
review, data support, study design and more.

Your standard study-a-thon might just send various groups 
to different areas within a shared space. During these 88 
hours, that ‘space’ might have had collaborators from both 
hemispheres working simultaneously at different points of 

COllabOraTiVe aCTiViTies

OHDSI’s COVID-19 work began with the ultimate show of collaboration & community. 
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a 13-hour time period. From breakfast in one part of the 
world to dinner in another, determined volunteers didn’t stop  
working together to seek answers during a global crisis.

“OHDSI has always been about people working together to 
solve common goals, and I am proud our team helped to make 
this event possible,” Rijnbeek said. “We brought the OHDSI 
world to Erasmus MC in person last year, but it was even 
more important to bring them together virtually right now.”

88 hours.
It is unrealistic to think OHDSI’s monumental goals 

could be accomplished in such a limited time.  Early work  
needed to be done to develop an infrastructure for both the  
meetings and the OHDSI technical platforms, which  
happened mainly due to the sustained efforts of Lee Evans, 
Anthony Sena, and James Wiggins. Beyond that, many of 
the prioritized questions that would become the primary  
focus of the four days were determined beforehand.

Community involvement was sought in suggesting such 
questions, but a group that truly believes in collaborative 
open science knew this was a time to reach outside the  
circle. Stakeholders around the world reached out to  
national governments, public health agencies, and health- 
related institutions to learn what the most critical questions 
were right now. That feedback, as well as a literature review 
process that began days before the study-a-thon, helped the 
core team provide a framework for the four days.

There was a clear desire to create a multi-nation  
characterization study of COVID-positive patients, even if 
the data size was more limited at the moment.

There was a need to under-
stand the overall safety profile 
of different drugs being con-
sidered in COVID treatment; 
that included hydroxychlo-
roquine, which became an  
international fascination af-
ter achieving small success in 
France and then being touted 
by U.S. President Donald Trump 
on multiple occasions.

There were crucial prediction 
questions, which could help 
healthcare workers make 
important triage decisions,  
including which patients would 
require hospitalization. As each 
day passed, the challenges  

facing overwhelmed medical facilities globally were becom-
ing abundantly clear.

Preliminary work with data was necessary as well.  
Christian Reich led the vocabulary team to develop 
COVID-related updates on the standardized vocabularies, 
while Kristin Kostka and Greg Klebanov were among many 
collaborators working with different sites on either data  
conversion or analysis support. Seng Chan You and Rae 
Woong Park collaborated with the South Korean HIRA, 
which worked with OHDSI to run packages against a 
more robust set of COVID data than anywhere in the  
United States. A handful of American institutions, including  
Columbia and Stanford, signed on to provide deidentified 
COVID data as well.

“The data owners chose to donate their data for use in 
these critical studies simply because they want to help,” 
Kostka said. “They share our belief in the power of the 
OHDSI community, and because of that trust, we are able 
to generate the world’s largest observational studies to help 
inform decision-making in this major public health issue. I 
think that’s the coolest thing imaginable, and I am so proud 
to be part of this effort.”

Laying the groundwork was the necessary warmup for 
the sprint that was to come — and the marathon that would  
follow.

88 hours.
It began Thursday, March 26, at 7 am in Oxford, as Prieto- 

Alhambra welcomed an international community of people 

continued on next page

COllabOraTiVe aCTiViTies

More than 300 people from across 30 countries joined a critical journey during a 
4-day study-a-thon in March, 2020, wahich set the foundation for OHDSI’s work 
around COVID-19. It was the ultimate sign of collaboration through open science.
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to this unique and critical initiative. A panel including Ryan, 
Rijnbeek and George Hripcsak — chair of the Department 
of Biomedical Informatics at Columbia University, the  
coordinating center for OHDSI — discussed the long  
journey from the formation of OHDSI to this moment, and 
what they believed could be accomplished over four days.

Subgroup calls immediately followed to set the 
course for their respective work plans. Teams within  
characterization, estimation and prediction studies discussed 
study questions, varied responsibilities, and timetables over 
the four days; those timetables were dependent on the  
phenotype group, which had to develop standard cohorts 
that could be used within all studies.

It was the ultimate team environment.
And the clock was now ticking.

88 hours.
Leadership from institutions including Oxford, Erasmus, 

Columbia, UCLA, Ajou University, Janssen Research and 
Development, and IQVIA helped put this event in motion, but 
OHDSI empowers collaborators at different stages of their 
own journey to make important contributions.

Jennifer Lane, an orthopedic surgeon pursuing her 
PhD at Oxford, led the literature review efforts and  
co-authored the manuscript for the largest safety profile on  
hydroxychloroquine ever executed. Ed Burn, a recent PhD 
graduate from Oxford, led the characterization team; he had 
also served as lead author for the Lancet Rheumatology  
paper on knee replacement.

Ross Williams, Cynthia Yang and Aniek Markus are each 

PhD students at Erasmus, and they worked on co-authoring a  
prediction study that could help critical hospitalization and 
triage decisions healthcare workers are making daily.

Anna Ostropolets, a PhD student at Columbia, shared in 
the leadership of the phenotype team and presented on the 
114 validated & reviewed cohorts developed and distributed 
by the team during the closing call.

Many others within academia contributed to the initiative, 
while global stakeholders from both industry and health-
care agencies provided critical efforts, ranging from protocol  
design to data support.

“The OHDSI community has an open approach to  
everything,” said Lane, co-lead author of the hydroxychloro-
quine study, which would eventually be published by Lancet  
Rheumatology but made its immediate impact as a preprint. 
“It is based upon clear communication, that all contributions 
are valuable. Everyone is playing to their strengths, which 
means that the combined effort is precise in many areas 
that would be incredibly difficult or impossible within one  
research group or institution. I have met people who will 
shape the way I work in the future, both through their  
leadership and their willingness to help me learn novel  
research approaches.”

Many registrants were newcomers to the OHDSI process 
who found the idea of a COVID-19 study-a-thon either  
inspirational and interesting. Their contributions may 
have been more limited than others over the 88 hours. 
Some from that group quickly found their footing in the  
community afterwards and joined studies either developed or  
brainstormed over the four days.

continued from previous page
COllabOraTiVe aCTiViTies
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Each person who takes that step strengthens the community.

88 hours.
You’ve seen that number before? OK, here are a few new 

ones.
Between the 12 global huddles, there were more than 

100 collaborator calls and 13,000 chat messages over 17  
concurrent channels (different teams). More than 10,000 
publications were reviewed and 355 cohort definitions were 
defined to lead to the drafting of nine protocols and the  
release of 13 study packages.

“The real-world evidence we are generating to inform  
decision-making in this pandemic is the most important 
thing to come from these four days,” Ryan said. “Reflect-
ing on what a community of volunteers achieved in this  
collaborative setting is humbling. We had a shared goal that 
mattered to everybody, but OHDSI has a way of attracting 
good people that you enjoy being around. I don’t take that 
for granted. The people that make up our community are our 
greatest strength.”

It’s easy to have that positive feeling on Day 1, or as 
you reach the close, but to have it in the middle of a 
four-day marathon is a testament to the energy created  
organically. The Friday night chat messages and Saturday 
morning team calls mattered — in that short a time, it all 
matters — and maintaining focus and enthusiasm powered 
the process from start to finish.

The 88th hour.
The global closing call was broadcast live to a global  

audience and provided a series of presentations about how 
OHDSI arrived at this moment. It was an opportunity to  
celebrate shared efforts, announce study designs and  
preliminary findings, and plan for the future.

When Prieto-Alhambra signed off for the final time, 
COVID-19 did not go away.

OHDSI won’t either.
The efforts continued immediately. As protocols continue to 

be designed or improved, data partners work to run studies 
and generate evidence. The first manuscript was submitted 
for peer review two weeks after the final signoff, and more 
followed.

Generating real-world evidence to improve healthcare has 
been the OHDSI mission since it officially formed in 2014. 
This has been a passion project for a global community that 
expands in both people and analytic capability each year.

Nobody saw this moment coming. But it did, and  
OHDSI was more ready for it than even the most optimistic  
collaborator could have imagined.

There were critical discoveries in the first six years, 
and there are many more to come — including some 
that will aid global efforts against COVID-19 in the near  
future.

But those 88 hours stand as a defining moment for OHDSI, 
and they are a glimpse of this community’s potential on the 
journey ahead.

by Craig Sachson
published April 17, 2020

What You Should Know About What You Should Know About 
The 2020 OHDSI COVID-19 Study-A-ThonThe 2020 OHDSI COVID-19 Study-A-Thon

• More than 330 people from across 30 countries 
(six continents) registered for the event.

• The event took place over 88 hours between 
March 26-29, and it was coordinated by the Erasmus 
University Medical Center.

• There were 17 concurrent channels on the overall 
Teams platform, and those channels hosted more 
than 100 collaborator calls.

• There were 12 global huddles, spaced out so 
collaborators from around the world would have a 
daily opportunity to hear about community progress.

• More than 10,000 publications were reviewed both 
prior and during the event.

• There were 13,000+ chat messages that helped 
design both 355 cohort definitions and nine protocols, 
as well as the release of 13 study packages.

• The closing call has been viewed almost 1,800 times 
since it was posted to YouTube.

• The OHDSI community has published numerous 
COVID-19 studies (including in Lancet Rheumatology, 
Nature Communications, Lancet Digital Health, and 
The BMJ), and continues that work currently with 
studies around vaccine surveillance.

COllabOraTiVe aCTiViTies
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Published in 2019, the Book of OHDSI (book.ohdsi.org) 
aims to be a central knowledge repository for OHDSI, and 
it focuses on describing the OHDSI community, OHDSI data 
standards, and OHDSI tools.

It is intended for both OHDSI newcomers and veterans 
alike, and aims to be practical, providing the necessary theory 
and subsequent instructions on how to design and implement 
research yourself.

You will learn about the OMOP common data model 
and standard vocabularies, and how they can be used to  
standardize an observational healthcare database. You 
will learn about three analytic use cases for these data:  
characterization, population-level estimation, and patient- 
level prediction. You will read about OHDSI’s open-source 
tools and how they can be applied to your data and how 
you can design and implement your own analyses following  

OHDSI’s best 
practices.

Chapters on data quality, clinical validity, software  
validity, and method validity will explain how to  
establish the quality of the generated evidence. Lastly, 
you will learn how to use the OHDSI tools to execute 
these studies in a distributed research network.

 
The Book of OHDSI is available for free online in  

English, Korean and Chinese, and can also be  
purchased through Amazon (all links on OHDSI.org).

Thank You To Our Book of OHDSI Contributors

Martijn Schuemie, who co-led the Book 
of OHDSI development with David 
Madigan, introduced the book at the 
2019 U.S. Symposium.

Members of the OHDSI community collaborated 
on documentation efforts for the Book of OHDSI 
at Case Western Reserve Univ. in Cleveland.

The Book of OHDSIThe Book of OHDSI

Hamed Abedtash Mustafa Ascha Mark Beno Clair Blacketer David Blatt
Brian Christian Gino Cloft Frank DeFalco Sara Dempster Jon Duke
Sergio Eslava Clark Evans Thomas Falconer George Hripscak Vojtech Huser
Mark Khayter Greg Klebanov Kristin Kostka Bob Lanese Wanda Lattimore 
Chun Li David Madigan Sindhoosha Malay Harry Menegay Akihiko Nishimura 
Ellen Palmer Nirav Patil Jose Posada Nicole Pratt Dani Prieto-Alhambra
Christian Reich Jenna Reps Peter Rijnbeek Patrick Ryan Craig Sachson
Izzy Saridakis Paola Saroufim Martijn Schuemie Sarah Seager Anthony Sena
Sunah Song Matthew Spotnitz Marc Suchard Joel Swerdel Devin Tian
Don Torok Kees van Bochove Mui Van Zandt Erica Voss Kristin Waite
Mike Warfe Jamie Weaver James Wiggins Andrew Williams Seng Chan You



31#JoinTheJourney OHDSI.org

COllabOraTiVe aCTiViTies

What Will You Find in The Book of OHDSI? 
Preface

Goals of the Book ..................................................... ix
Structure of the Book ................................................ ix
Contributors ...............................................................x
Software Versions .....................................................x
License .....................................................................xi
How the Book is Developed .....................................xi
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There is nothing quite like an OHDSI symposium.
Whether it is held in the U.S., Europe or Asia, our community has turned 

the symposium into one of the most anticipated events of the year. The 
pandemic forced a temporary shift to virtual symposia, but we have been 
thrilled to return to in-person gatherings this year, beginning with the  
European symposium in June.

The opportunity to learn from each other and connect as colleagues and 
friends is unmatched, and our most impactful scientific discoveries are 
shared at the symposia. We hope you can join us at a future event!

Oct. 20, 2015 • Washington, D.C. Sept. 23-24, 2016 • Washington, D.C.

Oct. 18-20, 2017 • Bethesda, Md. Mar. 23-24, 2018 • Rotterdam, Neth.

The OHDSI Symposium
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June 27-29, 2019 • Guangzhou, China Sept. 15-17, 2019 • Bethesda, Md.

Dec. 12-14, 2019 • Gwangju, Korea

Oct. 11-13, 2018 • Bethesda, Md. Mar. 29-30, 2019 • Rotterdam, Neth.

COllabOraTiVe aCTiViTies

June 24-26, 2022 • Rotterdam, Neth.
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2021 OHDSI Symposium2021 OHDSI Symposium
The 2021 OHDSI Global Symposium featured plenary presentations on both 

OHDSI’s Impact on the COVID-19 Pandemic (Day 1), and On the Journey to  
Reliable Evidence (Day 2). The main days included the State of the Community  
Presentation, the Collaborator Showcase, and a memorable Closing  
Ceremony that focused on OHDSI’s work through the perspective of a patient.

There were also a pair of activities, including the first OHDSI Reproducibility 
Challenge workshop, and also a full-day tutorial on building conceptsets.

If you missed it, or wish to watch any of the presentations again, they are 
all available at ohdsi.org/2021-ohdsi-global-symposium.

More Highlights from OHDSI2021
• The Closing Ceremony (Patrick Ryan, Jamie 
Weaver) highlighted the value of observational 
health research, as a former Titan Award recipient 
shared his story about appreciating OHDSI’s work 
from the patient’s perspective.
• The collaborator showcase received a record 
number of submissions, and following a peer- 
review process, there were more than 100  
submissions of posters, software demos, and 
lightning talks; check out page 31 for more on the 
collaborator showcase. 
• The State of the Community (George Hripcsak) 
highlighted the mission, development and direction 
of the OHDSI community.

The first plenary (above) featured the State of the Community pre-
sentation, updates from the global OHDSI network, and then a series of 
talks about OHDSI’s impact on the COVID-19 pandemic. The second 
plenary (below) focused on the journey to reliable evidence. Videos from 
both are available at the symposium homepage on OHDSI.org.

COllabOraTiVe aCTiViTies
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2021 Collaborator Showcase2021 Collaborator Showcase
Community Contribution AwardsCommunity Contribution Awards

Alberto Labarga: Extending the OMOP CDM to store the output of natural language  
processing pipelines 

Anna Ostropolets: The concept of anchoring in observational study design and its influence
Kimberley Dickinson: Gold or Lead? Adjudicating Differences between CDM Data and Chart 

Reviews 
Kelli Li: Competing risk regression models in cohort studies with the R package Cohort 

Method 
Christophe Lambert: Detecting PTSD and self-harm among US Veterans using positive  

unlabeled Learning

2021 Lightning Talks2021 Lightning Talks
Data Quality Dashboard Used to Improve Data 

Quality in the EHDEN Network
Presenters: Clair Blacketer, Erica Voss

Beyond Clinical: Integrating Research Assay Data 
into the Observational Health Data Sciences and 
Informatics Common Data Model (OHDSI CDM) 

through the Surgical Critical Care Initiative (SC2i)
Presenter: Chandra Almond

Extending the OMOP CDM to store the output of 
natural language processing pipelines

Presenter: Monica Arrue

Validation of the Genomic Variant Vocabulary 
against TCGA

Presenter: Denys Kaduk

Evaluating the performance of Austin’s standard-
ized difference heuristic in observational cohort 

studies with varying sample size
Presenter: Mitchell Conover

Leveraging APHRODITE to identify bias in 
statistical phenotyping algorithms

Presenter: Juan Banda

Assessing the impact of race on glomerular  
filtration rate prediction

Presenter: Linying Zhang

A Prediction Model Library
Presenter: Ross Williams

Detection of prone positioning in hospitalized 
COVID patients using NLP

Presenter: Patrick Alba

From metrics to intelligence using the OMOP CDM 
and Patient-Level-Prediction package as a  

foundation decision support tool
Presenter: Ismail Gögenur 

Detecting PTSD and self-harm among US Veterans 
using positive unlabeled Learning

Presenter: Christophe Lambert

Revealing unknown benefits of existing 
medications to aid the discovery of new 

treatments for post-traumatic stress disorder
Presenter: David Kern

The European Health Data & Evidence Network 
(EHDEN) Sharing the OHDSI Journey and a Vision 

of Evidence Today, Not in Several tomorrows
Presenter: Nigel Hughes

Long term outcomes of prostate cancer patients 
managed by watchful waiting: results from the 

PIONEER/EHDEN/OHDSI study-a-thon
Presenter: Kees van Bochove, Asieh Golozar

Covid-19 Pandemic impacts on mental health 
Related conditions Via multi-database network: a 
Longitudinal Observational study (CERVELLO)

Presenter: Hao Luo

Large Scale Dissemination of OHDSI Methods and 
Tools: Introducing a New Community Resource, 

the OHDSI Center at the Roux Institute at 
Northeastern University

Presenter: Kristin Kostka

COllabOraTiVe aCTiViTies
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The EHDEN AcademyThe EHDEN Academy
The EHDEN Academy (academy.ehden.eu) serves as a free, publicly available 

online educational resource for anyone working in the domain of real-world 
data and real-world evidence. 

Originating in the European Health Data & Evidence Network (EHDEN) IMI2 
project, its goal is to build upon the foundations of that project and its  
collaboration with the OHDSI community. It is currently used across ~70  
countries and has ~2900 enrollees. 

The EHDEN Academy is a resource on tools, methods and skills for all those 
who generate and utilize data, work technically 
with it (e.g. ETL and mapping), and are  
involved in methodological development and 
the use of standardized analytical tools.

Current Courses in the
 EHDEN Academy

• Getting Started• Getting Started
• EHDEN Foundation• EHDEN Foundation
• Introduction to Real • Introduction to Real 
 World Data & Real World Data & Real
 World Evidence World Evidence
 (non-expert) (non-expert)
• Open Science & FAIR • Open Science & FAIR 
 Principles Principles
• Introduction to Data• Introduction to Data
 Quality Quality
• Phenotype Definition, • Phenotype Definition, 
 Characterisation and  Characterisation and 
 Evaluation Evaluation
• Patient-Level Prediction• Patient-Level Prediction
 R for Patient-Level  R for Patient-Level 
 Prediction Prediction
• Population-Level Effect • Population-Level Effect 
 Estimation Estimation

Courses In Development
• Regulatory Learning• Regulatory Learning
 Pathway Pathway
• Risk Minimization • Risk Minimization 
 Management Management
• Data Quality• Data Quality

The European Health Data & Evidence Network  
(EHDEN.eu) aspires to be the trusted observational  
research ecosystem to enable better health decisions, 
outcomes and care. 

Its mission is to provide a new paradigm for the  
discovery and analysis of health data in Europe by  
building a large-scale, federated network of data  
sources standardized to the OMOP common data  
model and collaborating with OHDSI internationally.

As of the summer of 2022, EHDEN has built a  
federated network, so far, of 166 data partners from 
across 27 European nations, and has trained 65 
small-to-medium enterprises to support mapping of 
~650 million records to OMOP. The EHDEN study  
workflow portal was made public at the OHDSI Europe  
Symposium 2022 (portal.ehden.eu) with free access for 
the Data Partner Catalogue. A startup not-for-profit is 
being launched for sustainability.

• Introduction to Usagi • Introduction to Usagi 
 & Code Mappings & Code Mappings
 for an ETL for an ETL
• Infrastructure• Infrastructure
• OHDSI in a Box• OHDSI in a Box
• OMOP CDM and • OMOP CDM and 
 Standardised  Standardised 
 Vocabularies Vocabularies
• Extract, Transform &• Extract, Transform &
 Load Load
• ETL Learning • ETL Learning 
 Pathway: Data  Pathway: Data 
 Partner & SME Real Partner & SME Real
 World Use Cases World Use Cases
• ATLAS• ATLAS
• Health Technology • Health Technology 
 Assessment Assessment

• HADES• HADES
• Outcome Standards• Outcome Standards
• OHDSI and Low/ • OHDSI and Low/ 
 Middle Income   Middle Income  
 2Countries (LMICs) 2Countries (LMICs)
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The European Medicines Agency (EMA)  
announced Feb. 9, 2022 that Erasmus  
University Medical Center Rotterdam has 
been contracted to establish the DARWIN EU® 
(Data Analysis and Real World Interrogation  
Network) Coordination Centre.

The role of the Coordination Centre is to  
develop and manage a network of real-world 
healthcare data sources across the EU and to 
conduct scientific studies requested by  
medicines regulators and, at a later stage,  
requested by other stakeholders.

The vision of DARWIN EU® is to give EMA and 
national competent authorities in EU Member 
States access to valid and trust-worthy real-world 
evidence, for example on diseases, patient  
populations, and the use, safety and effectiveness 
of medicines, including vaccines, throughout the lifecycle of a 
medicinal product.

By supporting decision-making on the development,  
authorisation and surveillance of medicines, a wide range of 
stakeholders will benefit, from patients and healthcare  
professionals to health technology assessment bodies and the pharmaceutical industry.  
Additionally, DARWIN EU® will provide an invaluable resource to prepare for and respond to 
future healthcare crises and pandemics.

For example, the availability of timely and reliable real-world evidence can lead to  
innovative medicines becoming more quickly available to patients. Better evidence also  
supports more informed regulatory decision-making on the safe and effective use by patients 
of medicines on the market.

 Peter Rijnbeek is the Executive Director of the DARWIN EU® Coordinating Center. He is a 
veteran OHDSI collaborator and Titan Award honoree, and he serves as Chair of the  
Department of Medical Informatics of the Erasmus MC.

COllabOraTiVe aCTiViTies

The DARWIN EUThe DARWIN EU®® Initiative Initiative

Peter Rijnbeek, Chair of the Department of  
Medical Informatics at Erasmus MC, presented 
on DARWIN EU during the 2022 OHDSI European 
Symposium.
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OHDSI, SNOMED International Formalize OHDSI, SNOMED International Formalize 
5-Year Agreement To Open New Research  5-Year Agreement To Open New Research  
Opportunities For Research CommunitiesOpportunities For Research Communities
The OHDSI community and SNOMED International formalized their long-time  

relationship with a five-year collaborative agreement that will benefit both of 
their user communities.

SNOMED CT is a core terminology within OHDSI’s common 
data model: Observational Medical Outcomes Partnership 
(OMOP), allowing the use of other terminologies and classifications 
through computable linkages.

The collaboration, which officially began in April 2022,  
provides OHDSI and its user community with comprehensive 
ontologies on specific healthcare domains and content such as 
devices, social determinants of health, disease severity scores 
and modifiers of cancers, as well as better concept definitions 
and resolutions of composite concepts in large-scale  
observational research. 

In return, OHDSI and its user community can provide 
SNOMED International with information and feedback on 
clinical validation, frequency of use data, and validation of 
SNOMED CT content modeling. Ultimately, continuous feedback 
shared regarding identified content gaps will benefit both user 
communities as we move forward together.

The collaboration supports SNOMED International’s Member 
and stakeholder-driven five-year strategy, which includes  
genomic content collaboration as well as engagement with the 

research community. The work of  
OHDSI looks to showcase the use 
of SNOMED CT for the purposes 
of data analytics, supporting both 
healthcare research and audit, 
with the aim of enhancing  
healthcare globally.

“Both OHDSI and 
SNOMED International are 
working towards creating 
a healthcare environ-
ment that provides both 
patients and clinicians 
the real-world evidence 
needed to make informed 
and important decisions. 
SNOMED plays a criti-
cal role by delivering the 
comprehensive health 
terminologies necessary 
for OHDSI to generate 
reliable and reproducible 
evidence. Our community 
is thrilled to formalize this 
partnership so we can 
continue this important 
work.”   

- George Hripcsak
Chair of the OHDSI 
Coordinating Center at 
Columbia University.
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HL7 International and OHDSI Announce HL7 International and OHDSI Announce 
Collaboration to Provide Single Common Collaboration to Provide Single Common 

Data Model for Sharing Information in Data Model for Sharing Information in 
Clinical Care and Observational ResearchClinical Care and Observational Research

COllabOraTiVe aCTiViTies

Health Level Seven International (HL7®) and the 
OHDSI network agreed to a collaboration in 2021 to 
address the sharing and tracking of data in the  
healthcare and research industries by creating a 
single common data model. The organizations will 
integrate HL7 Fast Healthcare Interoperability Resources (FHIR®) and OHDSI’s 
Observational Medical Outcomes Partnership (OMOP) common data model to 
achieve this goal.

HL7 International CEO Dr. Charles Jaffe, M.D., Ph.D., underscored the significance of this 
partnership. “The Covid-19 pandemic has emphasized the need to share global health and 
research data. Collaboration with OHDSI is critical to solving this challenge and will help our 
mutual vision of a world in which everyone can securely access and use the right data when 
and where they need it.”

The organizations will align their standards to capture data in a clearly defined way into a 
single common data model. This will allow clinicians as well as researchers to pull data from 
multiple sources and compile it in the same structure without degradation of the information. 
This endeavor has global implications with the potential to permit the clinical community to 
define the elements they need, package and share them in a consistent single structure.

“We are excited to have the OHDSI community join this partnership with HL7 to evolve 
community standards around observational research and clinical care,” said George  
Hripcsak, MD, MS, OHDSI’s coordinating center director. “These standards set the foundation 
for our mission of global, open-science research, and this partnership will accelerate the de-
velopment of effective and safe treatments for diseases facing today’s global population.”

Health Level Seven International is the global authority for healthcare information interoper-
ability and standards with affiliates established in more than 30 countries. HL7 is a non-profit, 
ANSI accredited standards development organization dedicated to providing a comprehensive 
framework and related standards for the exchange, integration, sharing, and retrieval of elec-
tronic health information that supports clinical practice and the management, delivery and eval-
uation of health services. HL7’s members represent approximately 500 corporate members, 
which include more than 90 percent of the information systems vendors serving healthcare. 
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OHDSI + Large Community InitiativesOHDSI + Large Community Initiatives
OHDSI is proud to collaborate with large community initiatives around the world, 

to support the adoption of the OMOP Common Data Model and OHDSI tools, and to 
advance our shared interests in generating reliable evidence. 

Some of these initiatives have been mentioned in previous pages (EHDEN, HL7, 
SNOMED), while other organizations are highlighted below. If your organization 
would like to collaborate with OHDSI, please reach out on our forums!

In 2020, OHDSI was awarded a $10 million contract from the 
U.S. Food and Drug Administration (FDA) to provide support to 
the Biologics Effectiveness and Safety (BEST) program, which 
was launched by the FDA Center for Biologics Evaluation and 
Research (CBER) in 2017.

The lead research team, primarily comprised of OHDSI personnel 
from Columbia University, UCLA, Northeastern Univaersity and Johns Hopkins University provides support to 
the BEST system in its mission to conduct safety and effectiveness surveillance of biologic products (vaccines, 
blood and blood products, tissues and advanced therapeutics).

PIONEER is part of the Innovative Medicine Initiative’s (IMI’s) “Big Data for 
Better Outcomes” (BD4BO) umbrella program. The BD4BO mission is to im-
prove health outcomes and healthcare systems in Europe by maximizing the 
potential of Big Data. 

OHDSI collaborated with PIONEER in early 2021 on a five-day study-a-thon that investigated the natural 
history and outcomes of prostate cancer patients managed with watchful waiting.

The Federated E-Health Big Data for Evidence Renovation Network (FEEDER-NET) proj-
ect was initiated in 2018 with a $10 million budget from the Ministry of Trade, Industry & 
Energy of Korea. 

The main goal is to build a bio-health Big Data ecosystem, centered around an OMOP 
CDM-based data network. As of August 2021, the FEEDER-NET network included more 
than 54 million patients.

The All of Us Research Program is inviting one million people across the U.S. to help 
build one of the most diverse health databases in history. 

Researchers will use the data, which is mapped to the OMOP CDM, to learn how our 
biology, lifestyle, and environment affect health. This may one day help them find ways 
to treat and prevent disease.

The N3C is a partnership among the NCATS-supported Clinical and Translational 
Science Awards (CTSA) Program hubs, the National Center for Data to Health 
(CD2H), and NIGMS-supported Institutional Development Award Networks for 
Clinical and Translational Research (IDeA-CTR), with overall stewardship by 
NCATS. 
Collaborators are contributing and using COVID-19 clinical data, mapped to the 
OMOP CDM, to answer critical research questions to address the pandemic.
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DaTa sTanDarDs

OMOP Common Data ModelOMOP Common Data Model
The Observational Medical Outcomes Partnership (OMOP) Common Data 

Model (CDM) is an open community data standard, designed to standardize 
the structure and content of observational data and to enable efficient 
analyses that can produce reliable evidence.

“The OMOP 
Common Data 
Model serves as 
the foundation of 
all our work in the 
OHDSI community, 
and I’m proud that 
our open community 
data standard has 
been so widely 
adopted and so 
extensively used to 
generate reliable 
evidence.”   

- Clair Blacketer
2020 Titan Award for 
Data Standards 
recipient
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OMOP CDM By The NumbersOMOP CDM By The Numbers
37 tables
• 17 to standardize clinical data
• 10 to standardize vocabularies

394 fields
• 193 with _id to standardize identification
• 101 with _concept_id  to standardize content
• 43 with _source_value to preserve original data

1 Open Community Data Standard



44 #JoinTheJourneyOHDSI.org

What does it take to be an OHDSI data partner? Anyone with access to observational data can 
standardize their database in the OMOP Common Data Model, apply OHDSI’s open-source 
tools, and participate in collaborative research.
 
Who has already joined the journey and adopted the OMOP CDM? There are currently
453 databases, including 374 electronic health records, 34 registries and 30 administrative 
claims sources, that come from 41 different countries. Together, these databases represent 
more than 928 million unique patient records, approximately 12% of the world’s population.

DaTa sTanDarDs

Australia (14)
AOA National Joint Replacement Registry
AU-ePBRN (Australian Electronic practice
  based research network)
AUS Department of Veterans Affairs
Austin Health 
IQVIA Australia LPD
Melbourne Childrens Hospital
NPS MedicineWise
Pharmaceutical Benefits Scheme 10% extract
Primary Care GP data (Patron)
Royal Melbourne Hospital and Western Health 
  Hospital Admissions
South Western Sydney LHD
Sydney Childrens Hospital
Sydney Local Health District (LHD)
University of Queensland - Queensland Health

Austria (1)
Medical University of Vienna

Belgium (18)
Az Damiaan Oostende
AZ Delta
AZ Klina
AZ Maria Middelares
Icometrix
IQVIA Belgium LPD
LynxCare
Medaman
Onze-Lieve-Vrouwziekenhuis Aalst-Asse-
  Ninove
THIN BE
Universitaire Ziekenhuizen KU Leuven
University Hospital Antwerp
University MS Center
University MS Center 
UZ Brussel
UZ Leuven
VZW AZ Groeninge
Ziekenhuis Oost-Limburg

Bosnia and Herzegovina (1)
E-MEDIT D.O.O. & Hospital Travnik

Brazil (4)
Centre of Health Data and Knowledge 
  Integration - Cidacs
DataSUS Ambulatory
Hospital Israelita Albert Einstein
IQVIA Brazil

Bulgaria (2)
National Scientific Programme “E-Health in 
  Bulgaria”
SAT Health

Canada (3)
IQVIA Canada EMR
Provincial Health Services Authority (British
  Columbia)
The Hospital for Sick Children

China (7)
Beijing Anding Psychiatry Hospital
Beijing Smindu Medical Science & Technology 
  CO., Ltd.
Hebei Province Psychiatry Hospital
Jiangsu Province People’s Hospital
Nanfang Hospital COVID-19 Research 
  Database (NFHCRD)
Tianjin Anding Psychiatry Hospital
Wonders Information

Colombia (1)
Hospital Universidad del Norte

Croatia (7)
Bács-Kiskun Megyei Kórház a Szegedi 

  Tudományegyetem Általános Orvostudományi 
  Kar Oktató Kórháza
Clinical Hospital Dubrava 
Hierarchia & University Hospital Centre Zagreb
IGEA d.o.o. & University Hospital Center 
  Sestre milosrdnice
IN2 d.o.o. & Clinical Hospital Center Osijek
MCS Grupa d.o.o. & Health Care Center of 
  Primorje-Gorski Kotar County
Szabolcs-Szatmár-Bereg Megyei Kórházak és 
  Egyetemi Oktatókórház

Czechia (3)
Czech Myeloma Group
Institute of Rheumatology
OAKS Consulting s.r.o.

Denmark (2)
Aarhus University Hospital Database
Center for Surgical Science (CSS)

Estonia (2)
Estonian Genome Center at the University of 
  Tartu (EGCUT)
University of Tartu

Finland (10)
Auria Clinical Informatics
BCB Medical Ltd. 
Finnish Clinical Biobank Tampere
Finnish Hematology Registry/ HUS
Finnish Institute for Health and Welfare (THL)
Hospital District of Helsinki and Uusimaa
Hospital District of Southwest Finland 
HUS Datalake eCareforMe POC
Pirkanmaa Hospital District
University of Turku (Prostate Cancer Registry   
  of South West Finland)

France (13)
APHP-EDS
Assistance Publique - Hopitaux de Marseille
Assistance Publique – Hôpitaux de Paris 
  (AP-HP)
Bordeaux University Hospital
CEGEDIM HEALTH DATA
Centre Hospitalier Universitaire de Lille
Centre Hospitalier Universitaire de Montpellier
Centre Hospitalier Universitaire de Toulouse
IQVIA France DA
IQVIA France LPD
Lille University Hospital 
SNDS
THIN FR

Germany (11)
CancerDataNet GmbH
Charité - Universitätsmedizin Berlin 
European Rare Kidney Disease Registry 
(ERKReg)
GermanOncology
Hanover Medical School, Germany
IQVIA Germany DA
Krebsregister Rheinland-Pfalz
MS Forschungs- und Projektentwick-lungs-
  gGmbH
UKER
University Medicine Dresden
University of Ulm, ZIBMT

Greece (4)
Diagnostic & Therapeutic Center Of Athens 
  “Hygeia” Single Member Societe Anonnyme
General Hospital of Kavala 
Innovative Medical Research SA
Papageorgiou General Hospital

Hungary (2)
Semmelweis University 
University of Pécs

India (1)
Buddhimed Technologies

Ireland (1)
Trinity St James’s Cancer Institute, Dublin

Israel (4)
Hadassah OBGYN
Kineret (Ministry of Health medical center 
  network)
Locwise
The Directorate of Government Medical 
  Centers at the Israeli Ministry Of Health

Italy (28)
Agenzia regionale di sanità della Toscana 
  (ARS)
AO Card. G. Panico - Center for 
  Neurodegenerative Diseases and Aging Brain
ASL Roma 1
ATS Bergamo
Azienda Ospedaliera SS Antonio e Biagio e 
  Cesare Arrigo
Azienda Ospedaliera Universitaria Integrata 
  Verona
AZIENDA OSPEDALIERO UNIVERSITARIA 
  SAN LUIGI GONZAGA
Azienda Ospedaliero-Universitaria di Modena
Bambino Gesù Children’s Hospital
Basilicata Cancer Registry
Casa di Cura Privata del Policlinico (CCPP)
Fondazione Casa Sollievo della Sofferenza
Fondazione IRCCS Ca’ Granda Ospedale 
  Maggiore Policlinico
Fondazione IRCCS Istituto Neurologico Carlo 
  Besta
Fondazione IRCCS Policlinico San Matteo
Fondazione Istituto Nazionale dei Tumori
Fondazione Poliambulanza Istituto Ospedaliero
FONDAZIONE TOSCANA GABRIELE 
  MONASTERIO PER LA RICERCA MEDICA E 
  DI SANITA PUBBLICA (FTGM)
Grande Ospedale Metropolitano “Bianchi-
  Melacrino-Morelli”
Inspire-srl
IQVIA Italy LPD
IRCCS Azienda Ospedaliero-Universitaria di 
Bologna Policlinico di Sant’Orsola
IRCCS Policlinico San Donato
ISMETT
Modena Oncology Center - Azienda 
Ospedaliera Modena
Pedianet
Società  Italiana di Medicina Generale e delle 
  cure Primarie (SIMG)
University Hospital of Parma

Japan (4)
IQVIA Japan Claims
IQVIA Japan HIS
Japan Medical Data Center (JMDC)
MDV (Medical Data Vision)

Luxembourg (1)
Registre National du Cancer du Luxembourg

Montenegro (1)
Clinical Center of Montenegro

Netherlands (12)
Amsterdam UMC
EBMT: The European Society for Blood and 
Marrow Transplantation
European Clinical Research Alliance on 
  Infectious Diseases (ECRAID) and University 
  Medical Center Utrecht (UMCU)
Harm Slijper
IKNL
Integrated Primary Care Information (IPCI)

National Intensive Care Evaluation foundation
Netherlands Cancer Registry
Pharmo
Stichting VUmc-
STIZON 
VieCuri Medisch Centrum

Norway (2)
The Norwegian Cancer Registry
University Of Oslo

Portugal (11)
APDP
Centro Clínico Academico a Braga, 
  Associaçiao (2CA-Braga)
Centro Hospitalar Universitário de Coimbra 
  (CHUC)
CUF
EGAS MONIZ HEALTH ALLIANCE
Hospital da Luz Learning Health
Hospital Distrital de Santarém (HDS)
Hospital do Espírito Santo de Évora
Instituto de Medicina Molecular
Registo Portugues de Doentes Reumaticos
Unidade Local de Saúde de Matosinhos

Republic of Korea (59)
Ajou University Hospital
Asan Medical Center
Bucheon Sejong Hospital
Catholic Kwandong University International ST. 
  Mary’s Hospital
Cha University Bundang Medical Center
Chonnam National University Hwasun Hospital
Chonnan National University Hospital
Chungnam National University Hospital
Chungnam National University Sejong Hospital
Daegu Catholic University Medical Center
Dankook University Hospital
Dongguk University Medical Center
Ewha Womans University Medical Center 
  (Mokdong)
Ewha Womans University Medical Center 
  (Seoul)
Gachon University Gil Medical CenterGachon   
  University Gil Medical Center
Gangnam Severance Hospital
Gangneung Asan Hospital
Gyeongsang National University Changwon 
  Hospital
Gyeongsang National University Hospital
Hanyang University Seoul Hospital
Health Insurance Review & Assessment 
  Service
Incheon Sejong Hospital
Inha University Hospital
Jeonbuk National University Hospital
Kangbuk Samsung Hospital
Kangdong Sacred Heart Hospital
Kangwon National University Hospital
Konkuk University Medical Center
Konyang University Hospital
Korea Institute of Radiological & Medical 
  Sciences
Korea University Anam Hospital
Korea University Ansan Hospital
Korea University Guro Hospital
Kyung Hee University Hospital At Gangdong
Kyung Hee University Medical Center
Kyungpook National University Chilgok 
  Hospital
Kyungpook national university hospital
Myongji Hospital
Myongji Hospital (Jecheon)
National Cancer Center
National Health Insurance Service
National Health Insurance Service Ilsan   
  Hospital
Pusan National University Hospital
Samsungmedical Center

OHDSI Data PartnersOHDSI Data Partners
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Seoul National University Bundang Hospital
Seoul National University Hospital
Severance Hospital
Soonchunghyang University Hospital (Bucheon)
Soonchunghyang University Hospital (Chonan)
Soonchunghyang University Hospital (Gumi)
Soonchunghyang University Hospital(Seoul)
The Catholic University of Korea, Seoul ST. 
  Mary’s Hospital
The Catholic University of Korea, ST. Vincent’s 
  Hospital
The Catholic University of Korea, Uijeongbu 
  ST. Mary’s Hospital
The Catholic University of Korea, Yeouido ST. 
  Mary’s Hospital
Ulsan University Hospital
Wonju Severance Christian Hospital
Wonkwng University Hospital
Yongin Severance Hospital

Romania (1)
Thin Ro

Saudi Arabia (1)
Saudi Food and Drug Authority

Scotland (1)
HIC Dundee

Serbia (5)
Clinical-hospital center Zvezdara
Kliničko-bolnički centar Zvezdara (Clinical-
  hospital center Zvezdara)
Primary Healthcare Center Zemun
University Clinical Center of Niš
University Clinical Center of Serbia

Singapore (3)
Growing Up in Singapore Towards healthy 
  Outcomes (GUSTO)
Khoo Teck Puat Hospital (SG_KTPH)
National University Hospital Singapore

Spain (37)
Agencia Española de Medicamentos y 
  Productos Sanitarios, AEMPS
BIOCRUCES BIZKAIA HEALTH RESEARCH 
  INSTITUTE
Consellería de Sanidade
Consorci Corporació Sanitària Parc Taulí
Consorci Mar Parc de Salut de Barcelona    
  (PSMAR)
CORPORACIÓ SANITARIA PARC TAULI
FISABIO-HSRU
Fundació Institut d´Investigació Sanitària Illes 
  Balears
Fundació Institut d’Investigacions Mèdiques 
  (FIMIM)
Fundacion de Investigacion Biomedica del 
  Hospital Universitario 12 de Octubre
Fundación para la Investigación Biomedica 
  INCLIVA
FUNDACION PARA LA INVESTIGACION DEL 
  HOSPITAL UNIVERSITARIO LA FE DE LA 
  COMUNIDAD VALENCIANA (HULAFE)
Fundación para la Investigación del Hospital 
Universitario La Fe de la Comunidad 
  Valenciana (HULAFE)
Fundación para la Investigación e Innovación 
Biosanitaria en Atención Primaria (FIIBAP)
Healthcare Service of the Principality of 
  Asturias
HM Hospitals
Hospital del Mar (HMAR)
Hospital Sant Joan de Déu
Hospital Universitario 12 de Octubre
INFOBANCO12
Information System of Parc de Salut Mar 
  (IMASIS)
Institut Català d’Oncologia
Instituto Aragonés de Ciencias de la Salud 
  (IACS)
IQVIA Spain LPD
Marina Salud (Hospital de Denia)
Parc Sanitari Sant Joan de Déu
Pedro Mallol
Research Institute - Hospital de la Santa Creu 
  i Sant Pau
Rioja Salud
Servicio Cántabro de Salud and IDIVAL
Servicio Madrileño de Salud
Servicio Navarro de Salud Osasunbidea 
  (SNS-O)
The Information System for Research in 
  Primary Care
The Information System for Research in 
  Primary Care  – Hospitalization Linked Data 
  (SIDIAP-H)
Vall d’hebron Hospital Campus
Vall d’Hebrón Hospital Campus
Virgen Macarena University Hospital

Sweden (2)
MEB KI
Swibreg

Switzerland (5)
CancerDataNet

Data2time
Geneva Cancer Registry
HUG and SCQM
Institute of Social and Preventive Medicine, 
  University of Bern

Taiwan (5)
NHIRD
Shuang Ho Hospital
Taipei Medical University Clinical Research 
  Database (TMUCRD)
Taipei Medical University Hospital
Wanfang Hospital

Turkey (2)
Istanbul University Istanbul Faculty of Medicine
IUC Cerrahpaşa TIP Fakületesi

United Kingdom (26)
Akrivia Health
Barts Health NHS Trust 
Clinical Practice Research Datalink (CPRD 
  GOLD)
Clinical Practice Research Datalink Aurum 
  (CPRD Aurum)
Connected Bradford
DataLoch
GOSH
Harvey Walsh Ltd
King’s College London
Leeds Teaching Hospitals 
OPEN Health
Optimum Patient Care Limited
Queen Mary University of London
Royal College of General Practitioners 
  Research and Surveillance Centre
SAIL Databank
THIN UK
UCL
UK Biobank
UK Integrated Medical Record Database 
  (IMRD) THIN
UK National Neonatal Research Database
UKCRIS
University College London CALIBER
University College London Hospitals
University College London Hospitals NHS 
  Foundation Trust
University of Edinburgh
University of Edinburgh DataLoch

United States (136)
1up health
Advocate Aurora Health & University of 
  Madison Health Non-Muscle Invasive Bladder 
  Cancer
Advocate Aurora Health COVID Database
All of Us Research Program
ALTAMED (University of Southern California)
Atrium - Wake Forest Baptist Health
Blue Health Intelligence
Boston Medical Center
Brown University - Rhode Island HIE
C-Path
Carilion Clinic
Case Western
Cerner HealthFacts
Cherokee Health Systems
Children’s Hospital of Colorado
Children’s Hospital of Los Angeles

Children’s Hospital of Philadelphia
Children’s National
Columbia University Irving Medical Center
CRHFEI
DARTNet Institute: CER2 Study
Decision Resources Group (DRG)
Department of Health Services - Los Angeles
Duke University
Eau Claire Cooperative Health Center
Flatiron - OSCER
Geisinger Health System
George Washington University
Georgetown University ARIA
Georgia Tech Research Institute
GeriOMOP
Harvard University Mass General Brigham
HealthVerity
IBM(R) MarketScan(R) Commercial Claims
  (CCAE)
IBM(R) MarketScan(R) Medicare Supplemental 
  Database (MDCR)
IBM(R) MarketScan(R) Multi-State Medicaid 
  Database (MDCD
Icahn School of Medicine at Mount Sinai
Indiana University School of Medicine / 
  Regenstrief Institute
Inova Health System
IQVIA US Ambulatory EMR
IQVIA US Hospital Charge Data Master (CDM)
IQVIA US Oncology EMR
IQVIA US Open Claims
IQVIA US PharMetrics Plus
Johns Hopkins Unversity
Keck Medicine of University of Southern 
  California
Loyola University New Orleans
Maine Medical Center
Mayo Clinic
Medical University of South Carolina
Medicare Research Identifiable Files
MedStar Health
Memorial Sloan Kettering Cancer Center
Momentum AD
Montefiore Medical Center (Albert Einstein 
  College of Medicine)
N3C
Nemours Children’s Health System
NorthShore University HealthSystem
Northwestern Medicine Enterprise Data 
  Warehouse (NMEDW)
NYC-CDRN
NYU Langone
OCHIN (Oregon Community Health Information 
  Network)
Ochsner Medical Center
Oklahoma University
One Fact Foundation Payless Health
Optum© De-Identified Clinformatics(R) Data 
  Mart Database - SES & DOD
Optum© de-identified Electronic Health Record 
  Dataset (PANTHER)
Oregon Health & Science University
Pareto Intelligence
PEDSnet
Penn State
Premier Healthcare Database
QueensCare - Los Angeles
Reliant Medical Group
Rhode Island Quality Institute
Rush University Medical Center

Rutgers
Shriners Children’s
Spectrum Health West Michigan
STAnford medicine Research data Repository 
  (STARR)
Stony Brook
Surveillance, Epidemiology, and End Results 
  Program (SEER): B-Cell
TCC - Los Angeles
The Healthcare Cost and Utilization Project 
  (HCUP), Nationwide Inpatient Sample (NIS)
The National Health and Nutrition Examination 
  Survey (NHANES)
The Ohio State University Medical Center
TrialSpark
Tufts MC Research Data Warehouse (TRDW)
Tulane
UMass Memorial Medical Center
UNC Chapel Hill
University Medical Center New Orleans
University of Alabama at Birmingham
University of Arkansas
University of Buffalo
University of California Health
University of California, Davis
University of California, Irvine
University of California, Los Angeles
University of California, Riverside
University of California, San Diego
University of California, San Francisco
University of Chicago
University of Cincinnati
University of Colorado
University of Colorado, Anschutz Medical 
  Center
University of Illinois Chicago
University of Iowa
University of Kentucky
University of Miami
University of Michigan
University of Minnesota
University of Mississippi Medical Center
University of Nebraska Medical Center
University of New Mexico Health Sciences 
  Center
University of Pittsburgh
University of Pittsburgh - Banner
University of Rochester
University of Texas Houston
University of Texas Medical Branch
University of Texas Southwestern Medical 
  Center
University of Utah
University of Virginia
University of Washington
University of Wisconsin Madison
US Department of Defense
US Department of Veterans Affairs
UTPhysicians
Vanderbilt University
Veradigm Health Insights Data - Allscripts
Veradigm Health Insights Data - Practice 
  Fusion
Virginia Commonwealth University
Wake Forest University
WashU St Louis
Weill Cornell Medicine/NewYork-Presbyterian 
  Hospital (East Campus)
West Virginia University
Winship Cancer Institute of Emory University

Data 
Partner

Map
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OHDSI VocabulariesOHDSI Vocabularies
The OHDSI vocabularies allow organization and standardization of medical terms to be used 
across the various clinical domains of the OMOP common data model, and enables 
standardized analytics that leverage the knowledge base when constructing exposure and 
outcome phenotypes and other features within characterization, population-level effect 
estimation, and patient-level prediction studies.  

This treemap shows all concepts in the OHDSI vocabularies, 
organized by domain (color) and vocabularies (boxes sized 
by the number of concepts).
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OHDSI Vocabularies By The NumbersOHDSI Vocabularies By The Numbers
• 10,218,572 concepts
     • 3,549,524 standard concepts
     • 780,207 classification concepts

• 135 vocabularies
• 42 domains

• 81,243,356 concept relationships
• 85,241,004 ancestral relationships
• 3,268,183 concept synonyms

“If we really want to achieve global collaboration, we need more than just 
standardizing data format. We have to establish a shared understanding 
of data meaning and speak the same language when expressing clinical 
ideas. The OHDSI vocabularies is a community resource that makes it  
possible to work to reach this common goal.”   

- Christian Reich
2018 Titan Award for Data Standards recipient

as of v5.0 • Sept. 9, 2022

1 Shared Resource to Enable Data Standards

This network diagram shows the relationships 
between vocabularies. Nodes are vocabularies, 
sized by the number of concepts. Edges show 
connections between concepts within vocabularies.

Want to learn more about the
OHDSI vocabularies?
Read: book.ohdsi.org
Download: athena.ohdsi.org
Learn: academy.ehden.edu
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The open-source tools that empower OHDSI research are not only 
available to the community, but they are DEVELOPED by the  
community. Leaders within our global network, including 2018  
Titan Award recipient Martijn Schuemie (pictured), have developed 
the foundation for OHDSI collaborators to engage in robust, reliable 
and reproducible observational health research.
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VI. 
Open-Source

Software
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HADESHADES
HADES is a set of open source R packages for large scale analytics,  

including population characterization, population-level causal effect  
estimation, and patient-level prediction.

The packages offer R functions that together can be used to perform an  
observation study from data to estimates and supporting statistics,  
figures, and tables. The packages interact directly with observational 
data in the OMOP Common Data Model, and are designed to support both 
large datasets and large numbers of analyses. 

Each package includes functions for specifying and subsequently  
executing multiple analyses efficiently. HADES supports best practices 
for use of observational data as learned from previous and ongoing  
research, such as transparency, reproducibility, as well as measuring of 
the operating characteristics of methods in a particular context and  
subsequent empirical calibration of estimates produced by the methods.

Learn more about the individual HADES packages in this section.

Population-Level Estimation
CohortMethod
This is an R package for performing new-user cohort  
studies in an observational database in the OMOP  
Common Data Model.

EvidenceSynthesis
This R package contains routines for combining causal 
effect estimates and study diagnostics across multiple data 
sites in a distributed study. This includes functions for  
performing meta-analysis and forest plots.

SelfControlledCaseSeries
This is an R package for performing Self-Controlled Case 
Series (SCCS) analyses in an observational database in 
the OMOP Common Data Model.

SelfControlledCohort
This package provides a method to estimate risk by  
comparing time exposed with time unexposed among the 
exposed cohort.

Patient-Level Prediction
PatientLevelPrediction
This is an R package for building and validating patient- 
level predictive models using data in the OMOP Common 
Data Model format.

EnsemblePatientLevelPrediction
This is an R package for building and validating ensemble 
patient-level predictive models using data in the OMOP 
Common Data Model format. The package expands the 
OHDSI R PatientLevelPrediction package to enable  
ensemble learning.
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Cohort Construction
CAPR
This is an R package to develop and manipulate OHDSI 
cohort definitions. This package assists in creating a cohort 
definition that can be compiled by circe-be using CirceR. 
Cohort definitions developed in Capr are compatible with 
OHDSI ATLAS. Additionally the package allows for  
development of cohort design components, sub-items of a 
cohort design that are meant to be reusable and mutable to 
assist creating cohorts in study development.

CirceR
A R-wrapper for Circe, a library for creating queries for the 
OMOP Common Data Model. These queries are used in 
cohort definitions (CohortExpression) as well as custom 
features (CriteriaFeature). This package provides  
convenient wrappers for Circe functions, and includes the 
necessary Java dependencies.

CohortGenerator
This R package contains functions for generating cohorts 
using data in the CDM.

PhenotypeLibrary
This is a repository to store the content of the OHDSI  
Phenotype Library. These phenotype/cohort definitions 
have undergone an OHDSI best practice process by 
the Phenotype Development and Evaluation workgroup. 
Definitions that have graduated through this process are 
published in this repository, and are thus considered high 
quality cohort definitions.

Evidence Quality
CohortDiagnostics
This is an R utility package for the development and eval-
uation of phenotype algorithms for OMOP CDM compliant 
data sets. This package provides a standard, end to end, 
set of analytics for understanding patient capture including 
data generation and result exploration through an R Shiny 
interface. Analytics computed include cohort characteris-
tics, record counts, index event misclassification, captured 
observation windows and basic incidence proportions for 
age, gender and calendar year. Through the identification 
of errors, CohortDiagnostics enables the comparison of 
multiple candidate cohort definitions across one or more 
data sources, facilitating reproducible research.

MethodEvaluation
This R package contains resources for the evaluation of the 
performance of methods that aim to estimate the magni-
tude (relative risk) of the effect of a drug on an outcome. 
These resources include reference sets for evaluating 
methods on real data, as well as functions for inserting 
simulated effects in real data based on negative control 
drug-outcome pairs. Further included are functions for the 
computation of the minimum detectable relative risks and 
functions for computing performance statistics such as 
predictive accuracy, error and bias.

EmpiricalCalibration
This R package contains routines for performing empirical 
calibration of observational study estimates. By using a 
set of negative control hypotheses we can estimate the 
empirical null distribution of a particular observational 
study setup. This empirical null distribution can be used to 
compute a calibrated p-value, which reflects the probability 
of observing an estimated effect size when the null  
hypothesis is true taking both random and systematic error 
into account, as described in the paper Interpreting  
observational studies: why empirical calibration is needed 
to correct p-values.
Also supported is empirical calibration of confidence  
intervals, based on the results for a set of negative and 
positive controls, as described in the paper Empirical  
confidence interval calibration for population-level effect 
estimation studies in observational healthcare data.

Kheiron Contributor Kheiron Contributor 
CohortCohort

Paul Nagy and Adam Black, leads of the Open-
Source Community workgroup, founded the 
Kheiron Contributor Cohort in 2022 as a way 
to welcome and mentor new developers in the 
OHDSI community. The first cohort included 25 
individuals who committed 10% of their time for 
a year to join the journey with the open-source 
community, and the cohort has already made 
positive impacts on OHDSI tools. The cohort 
has hosted workshops, learned from developers 
around the community and made strong  
connections. Paul and Adam plan to lead a new 
cohort next year, and more information about that 
will be shared when available.
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Supporting Packages
Andromeda
AsynchroNous Disk-based Representation of MassivE 
DAta (ANDROMEDA) is an R package for storing large 
data objects. Andromeda allow storing data objects on a 
local drive, while still making it possible to manipulate the 
data in an efficient manner.

BigKNN
This is an R package implementing a large scale k-nearest 
neighbor (KNN) classifier using the Lucene search engine.

Cyclops
Cyclops (Cyclic coordinate descent for logistic, Poisson 
and survival analysis) is an R package for performing large 
scale regularized regressions.

DatabaseConnector
This R package provides function for connecting to various 
DBMSs. Together with the SqlRender package, the main 
goal of DatabaseConnector is to provide a uniform 
interface across database platforms: the same code should 
run and produce equivalent results, regardless of the  
database back end.

Open-sOurCe sOfTWare

Eunomia
Eunomia is a standard dataset in the OMOP (Observational 
Medical Outcomes Partnership) Common Data Model 
(CDM) for testing and demonstration purposes. Eunomia is 
used for many of the exercises in the Book of OHDSI. For 
functions that require schema name, use ‘main’.

FeatureExtraction
This is an R package for generating features (covariates) 
for a cohort using data in the Common Data Model.

Hydra
This is an R package and Java library for hydrating  
package skeletons into executable R study packages 
based on specifications in JSON format.

IterativeHardThresholding
IterativeHardThresholding is an R package for performing 
L_0-based regressions using Cyclops.

ParallelLogger
Support for parallel computation with progress bar, and 
option to stop or proceed on errors. Also provides logging 
to console and disk, and the logging persists in the parallel 
threads. Additional functions support function call  
automation with delayed execution (e.g. for executing  
functions in parallel).

ROhdsiWebApi
ROhdsiWebApi is a R based interface to ‘WebApi’  
(OHDSI RESTful services), and performs GET/PULL/
POST/DELETE calls via the WebApi. All objects starting 
from R or output to R - are analysis ready R-objects like 
list and data.frame. The package handles the intermediary 
steps by converting R-objects to JSON and vice versa. To 
ensure r-objects are analysis ready, the objects are type 
converted where possible, e.g. date/date time are  
converted from string to POSIXct.
This package makes reproducible research easier, by  
offering ability to retrieve detailed study specifications, 
transport study specifications from one instance to another, 
programmatically invoke the generation of a sequence of 
steps that are part of a study, manage running studies in 
batch mode.
An example of a WebApi endpoint is “http://server.org:80/
WebAPI”.

SqlRender
This is an R package for rendering parameterized SQL, 
and translating it to different SQL dialects. SqlRender can 
also be used as a stand-alone Java library and a  
command-line executable.

OhdsiSharing
This is an R package for sharing data between OHDSI  
partners.

The eight HADES packages shown above 
have been released on CRAN and have been  
downloaded more than 400,000 times.
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Certain factors for the success of an open-science community 
like OHDSI are more obvious than others. When hundreds of people 
come together to research a common cause, or studies are run 
against millions of patient records in a global database, it becomes 
clear that something impactful is happening.

One critical factor in OHDSI’s ability to perform rigorous, ground- 
breaking analyses lies under the surface, but it holds an equally  
important role in the overall community mission. 

A core foundation for OHDSI is open-source software develop-
ment, and a small group of community collaborators, led by Martijn 
Schuemie, has generated a collection of analytics tools that enable 
research both in and out of the OHDSI community.

HADES — the Health Analytics Data-to-Evidence Suite — is a set 
of (currently) 25 open-source R packages for large scale analytics, 
including population characterization, population-level causal effect 
estimation, and patient-level prediction, as well as supporting packages 
that are critical throughout the journey of observational research. The 
packages offer a robust set of functions that together can be used to 
perform all the steps required to conduct a network study, from connect-
ing to a database, translating queries into the appropriate SQL dialect, 
generating cohorts and extracting features, fitting large-scale statistical 
models, compiling results for meta-analysis and empirical calibration, 
and enabling exploration through interactive visualization dashboards.

The packages interact directly with any observational data in the 
OMOP Common Data Model, and are designed to support network 
research across large datasets with millions of patients and billions of 
observations, as well as smaller populations. HADES scales to enable 
large numbers of analyses so that researchers can systematically 
explore populations and hypotheses across a range of outcomes.

These packages, available on the HADES home page  
(ohdsi.github.io/Hades), have empowered at least 34 network studies. 
These include the OHDSI LEGEND study on hypertension, CHARYB-
DIS, hydroxychloroquine safety, the ongoing work with COVID AESI 
characterization, and many more. All packages are developed and 
released as open-source tools at github.com/OHDSI. Amongst the 
HADES ecosystem, all packages are made open source and publicly 
accessible through the OHDSI GitHub repository. Additionally eight 
packages are available on CRAN (The Comprehensive R Archive  
Network, a public repository for all R users). These eight HADES 
packages on CRAN and have been downloaded more than 400,000 
times (see graphic, opposite page).

“Our community, and observational researchers in general, owe 
an enormous debt of gratitude to Martijn and the HADES team 
for leading this effort,” said Provost and Senior Vice President for 
Academic Affairs at Northeastern University David Madigan, who is 
leading efforts around the new OHDSI Center at the Roux Institute. 
“Open-source development within the OHDSI community is the quiet 
force that is impacting important evidence that can save lives, and it 
shouldn’t be taken for granted.”

Beyond network studies, HADES allows researchers to conduct 
analyses locally. It supports best practices for use of observational 
data as learned from previous and ongoing research; for example, the 
population-level estimation methods have been extensively evaluated 
using the OHDSI Methods Benchmark, as published in the Harvard 
Data Science Review. 

Researchers can learn how to use HADES through documentation 
found in the Book of OHDSI (ohdsi.github.io/TheBookOfOhdsi/).

“We are very proud of the impact that HADES continues to make 
on real-world evidence generation,” said Schuemie, who leads the 
HADES workgroup. “Our team develops, tests and continuously 
monitors a set of tools that empowers global research using best 

practices developed within our 
community.”

OHDSI’s reach has  
expanded recently, including 
its role supporting the FDA 
BEST program in vaccine sur-
veillance, as well as informing 
best practices in the recent 
EMA revision of its guidelines. 
Researchers continue to 
join the community, and the 
breadth of work has expanded 
as collaboration efforts have 
matured. But for success to 
follow these positive develop-
ments, the HADES foundation 
and team continues to need 
greater support. 

A small portion of the com-
munity maintains the set of 
packages, and one consistent 
HADES objective is to diver-
sify the leadership within the 
ecosystem. There are several 
ways that OHDSI  
collaborators can support this 
critical piece of the puzzle.  
Developers can contribute by 
helping develop and test code. 
Users of the tools can help 
with testing, user documenta-
tion and other training resourc-
es. Those with the means can 
provide financial support to 
help pay for developers specif-
ically focused on open-source 
development. Anybody can 
contribute ideas as part of the 
HADES workgroup.

Just as every piece of the 
HADES toolset has aided the 
growth of OHDSI, every small 
contribution from the commu-
nity can aid the advancement 
of HADES.  

“Open-source development 
within the HADES ecosystem 
has been critical to our growth 
and success as a commu-
nity,” said George Hripcsak, 
Chair and Vivian Beaumont 
Allen Professor of Biomedical 
Informatics at Columbia, the 
coordinating center for OHDSI. 
“Martijn and the HADES team have done extraordinary work to put us 
in position to run observational health studies that make a difference 
to patients around the world, but we can’t overlook the burden on this 
small core of our community who have enabled this growth. I believe 
we have people who are generous with both their time and talents to 
help take HADES to a sustainable level as we continue to mature as 
a community.”

Package Maintainers
Martijn Schuemie
BigKnn, CohortMethod, Data-
baseConnector, Empirical- 
Calibration, EvidenceSynthe-
sis, MethodEvaluation,  
ParallelLogger, SelfCon-
trolledCaseSeries, SqlReader

Anthony Sena
CohortGenerator,  
FeatureExtraction,  
HYDRA

Jamie Gilbert
CohortDiagnostics,  
SelfControlledCohort

Gowtham Rao
PhenotypeLibrary,  
ROhdsiWebApi

Jenna Reps
EnsemblePatientLevel- 
Prediction, PatientLevel- 
Prediction

Marc Suchard
Cyclops,  
IterativeHardThresholding

Adam Black
Andromeda

Frank DeFalco
Eunomia

Lee Evans
OhdsiSharing

Christopher Knoll
CirceR

Martin Lavalee
CAPR

Peter Rijnbeek
PatientLevelPrediction
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ATLASATLAS
ATLAS is a free, publicly available, web-based tool developed by the 

OHDSI community that facilitates the design and execution of analyses on 
standardized, patient-level, observational data in the OMOP CDM format. 

“ATLAS makes it possible for everyone in 
the OHDSI community to collaboratively 
design high-quality observational studies 
and produce reproducible code that can 
be shared and executed on OMOP CDM 
databases around the world.”      

- Christopher Knoll
2018 Titan Award for Open-Source 
Development recipient

Enabling A Journey From Data To EvidenceEnabling A Journey From Data To Evidence
Explore Data

Design Analyses

Produce Code

Want to learn more about ATLAS?
Experience: atlas-demo.ohdsi.org/
Download: github.com/ohdsi/atlas
Read: book.ohdsi.org/
Train: academy.ehden.eu

Generate Evidence
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VII. 
Methods
Research

This graphic is taken from the Suchard et al 
study, published in The Lancet, that is featured 
on page 59.
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Empirical CalibrationEmpirical Calibration
Methodological research is a foundational aspect of OHDSI work. We seek to evaluate the 
performance of analytics methods so we understand when they can be appropriately 
applied and how confident we can be in the reliability of the evidence we generate. This 
research has provided the empirical evidence to allow OHDSI to establish best practices for 
the design and implementation of population-level effect estimation, as applied for safety 
surveillance and comparative effectiveness research. 
 
Negative controls – exposure-outcome pairs with no causal relationship – offer a powerful  
diagnostic to evaluate the reliability of a population-level effect estimation study. By 
applying the same method on the same data to a large collection of negative controls, one 
can determine if there is systematic error in the analysis, whether due to selection bias, 
confounding, or measurement error. Empirical calibration is a statistical procedure  
developed by OHDSI collaborators to use the error distribution estimated from negative 
controls and correct the original study statistics – point estimates, confidence intervals, 
and p-values – to restore their nominal operating characteristics and allow for a more  
honest interpretation of what really has been learned from observational data. 
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       LEGEND in PrincipleLEGEND in Principle
LEGEND (Large-scale Evidence Generation and Evaluation across a Network of  

Databases) applies high-level analytics to perform observational research on hundreds 
of millions of patient records within OHDSI’s international database network. 

LEGEND is based on 10 guiding principles that were published in JAMIA (August, 2020) 
and are listed below.

1. LEGEND will generate evidence at a 
large scale. Instead of answering a single question 
at a time (eg, the effect of 1 treatment on 1 outcome), 
LEGEND answers large sets of related questions at 
once (eg, the effects of many treatments for a disease 
on many outcomes). Aim: Avoids publication bias, 
achieves comprehensiveness of results, and allows for 
an evaluation of the overall coherence and consistency 
of the generated evidence.

2. Dissemination of the evidence will not 
depend on the estimated effects. All generated evidence is disseminated at once. Aim: Avoids publication bias and enhances transparency.

3. LEGEND will generate evidence using a prespecified analysis design. All analyses, including the research questions that will 
be answered, will be decided prior to analysis execution. Aim: Avoids P hacking.

4. LEGEND will generate evidence by consistently applying a systematic process across all research questions. 
This principle precludes modification of analyses to obtain a desired answer to any specific question. This does not imply a simple one-size-fits-all
process, rather that the logic for modifying an analysis for specific research questions should be explicated and applied systematically. Aim: Avoids P 
hacking and allows for the evaluation of the operating characteristics of this process (Principle 6).

5. LEGEND will generate evidence using best practices. LEGEND answers each question using current best practices, including 
advanced methods to address confounding, such as propensity scores. Specifically, we will not employ suboptimal methods (in terms of bias) to achieve 
better computational efficiency. Aim: Minimizes bias.

6. LEGEND will include empirical evaluation through the use of control questions. Every LEGEND study includes control 
questions. Control questions are questions where the answer is known. These allow for measuring the operating characteristics of our systematic  
process, including residual bias. We subsequently account for this observed residual bias in our P values, effect estimates, and confidence intervals 
using empirical calibration. [7,8] Aim: Enhances transparency on the uncertainty due to residual bias.

7. LEGEND will generate evidence using open-source software that is freely available to all. The analysis software is 
open to review and evaluation, and is available for replicating analyses down to the smallest detail. Aim: Enhances transparency and allows replication.

8. LEGEND will not be used to evaluate new methods. Even though the same infrastructure used in LEGEND may also be used to 
evaluate new causal inference methods, generating clinical evidence should not be performed at the same time as method evaluation. This is a corollary 
of Principle 5, since a new method that still requires evaluation cannot already be best practice. Also, generating evidence with unproven methods can 
hamper the interpretability of the clinical results. Note that LEGEND does evaluate how well the methods it uses perform in the specific context of the 
questions and data used in a LEGEND study (Principle 6). Aim: Avoids bias and improves interpretability.

9. LEGEND will generate evidence across a network of multiple databases. Multiple heterogeneous databases (different data 
capture processes, health-care systems, and populations) will be used to generate the evidence to allow an assessment of the replicability of findings 
across sites. Aim: Enhances generalizability and uncovers potential between-site heterogeneity.

10. LEGEND will maintain data confidentiality; patient-level data will not be shared between sites in the network. 
Not sharing data will ensure patient privacy, and comply with local data governance rules. Aim: Privacy.
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LEGEND in Action
LEGEND (Large-scale Evidence Generation and Evaluation Across a Network of 

Databases) principles have been applied to studying the effects of treatments for 
depression, hypertension, and COVID-19, and are being applied to Type 2 diabetes.

The clinical impact of LEGEND has already been observed, with important  
evidence that promotes better health decisions published in Lancet, JAMA Internal 
Medicine, and Hypertension.
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Starting On The Most Popular Hypertension Drug  Starting On The Most Popular Hypertension Drug  
Isn’t Most Effective, Per OHDSI’s LEGEND StudyIsn’t Most Effective, Per OHDSI’s LEGEND Study

Thiazide diuretics demonstrate better effectiveness and cause fewer side effects than ACE inhibitors as first-line antihypertensive drugs, according to 
a report published Oct. 24, 2019, in The Lancet. The study factors insurance claim data and electronic health records from 4.9 million patients across nine 
observational databases, making it the most comprehensive one ever on first-line antihypertensives, and it provides additional context to the 2017 guidelines 
for high blood pressure treatment developed by the American College of Cardiology (ACC) and American Heart Association (AHA).

Collaborators within the OHDSI network produced the paper “Comprehensive comparative effectiveness and safety of first-line  
antihypertensive drug classes: a systematic, multinational, large-scale analysis” as part of the collaborative’s ongoing LEGEND (Large-Scale  
Evidence Generation and Evaluation across a Network of Databases) project, which applies high-level analytics to perform observational research on  
hundreds of millions of patient records within OHDSI’s international database network.

OHDSI researchers believe LEGEND will continue to significantly enhance how real-world evidence is used to study important healthcare questions 
that impact millions of patients worldwide.

First-Line Thiazide Diuretic Users Experience 15% Fewer Adverse Cardiovascular Outcomes Than 
ACE Inhibitor Users

The 2017 ACC/AHA guidelines on antihypertensives recommend initiating hypertension (high blood pressure) treatment with prescription medications 
from any of five drug classes, including both thiazides and ACE inhibitors. Within the LEGEND project, ACE inhibitors produced both worse cardiovascular 
outcomes and worse side effects than thiazides.

First-line thiazide new-users experienced three major medical outcomes (heart attack, hospitalization for heart failure, and stroke) at an approximate 
15% lower event rate than those who began treatment with an ACE inhibitor. Furthermore, among potential side effects associated with first-line hyper-
tensive drugs, ACE inhibitor new-users experienced a higher rate of 19 potential side effects — and a lower rate of 2 — than thiazide diuretic new-users.

In spite of these differences, the majority of patients from this study who initiated treatment were prescribed ACE inhibitors (48%) over thiazides (17%); 
the results, however, indicate that over 3,100 major cardiovascular events could potentially have been avoided had those approximately 2.4 million ACE 

“We were able to compare all anti- 
hypertensive drug classes against each 
other at a massive scale and in a  
transparent and reproducible manner 
to study what patients worry about. 
Heart attack. Stroke. Heart failure.  
Drug safety. LEGEND synthesizes  
real-world evidence to determine how 
different drug classes impact the people 
who have to choose between them.”   

- Marc Suchard
2018 Titan Award recipient 
for Methodological Research

inhibitor new-users chosen a thiazide diuretic instead.

Filling The Evidence Gaps
“The LEGEND project attempts to fill the evidence gaps in treatment choices that randomized 

controlled trials (RCTs) leave unanswered,” said lead author Marc A. Suchard, MD, PhD (University 
of California, Los Angeles). “We were able to compare all antihypertensive drug classes against 
each other at a massive scale and in a transparent and reproducible manner to study what patients 
worry about. Heart attack. Stroke. Heart failure. Drug safety. LEGEND synthesizes real-world evidence 
to determine how different drug classes impact the people who have to choose between them.”

“We did not execute our study to prove one particular drug class was most effective,” Suchard 
added. “Instead, we used the high-level analytics and best practices developed within OHDSI to 
study all of these drug classes against each other and openly report on all possible comparisons. 
Researchers can then interpret specific results in the context of their own research questions.”

The paper also reported that non-dihydropyridine calcium channel blockers proved inferior to 
the four other first-line antihypertensive drug classes recommended in the 2017 guidelines; other 
classes included are angiotensin receptor blockers and dihydropyridine calcium channel blockers.

A LEGEND-ary Approach To Observational Science
“LEGEND is a unique, sophisticated approach to using observational data in a way that is 

reliable, rich and relevant,” Suchard said. “With the availability of existing health data available, we 
can start to answer important clinical questions in a reproducible manner.”

The LEGEND Hypertension project used state-of-the-art causal methods to address both  
observed confounding and residual bias. Covering patients from July 1996 to March 2018, the 
study filled in evidence gaps that were unavailable for the 2017 ACC/AHA guidelines. The RCTs 
from those guidelines factored approximately 31,000 users of either thiazide diuretics or ACE  
inhibitors, far fewer than the approximately 3.2 million new-users available in the LEGEND project.

“LEGEND is a novel approach that could transform the way we use real-world evidence in 
healthcare,” said senior author Patrick Ryan, PhD, Adjunct Assistant Professor of Biomedical 
Informatics (Columbia University). “Rather than inefficiently conducting bespoke analyses one-
question-one-method-one-database-at-a-time, leaving us vulnerable to various threats to 
scientific validity, LEGEND provides a systematic framework that can reproducibly generate evi-
dence by applying advanced analytics across a network of disparate databases for a wide array of  
exposures and outcomes.”
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The Journey To Reliable Evidence

“Patient-level prediction can make a huge impact on the way we deliver medicine, 
but a lot more work is needed to ensure quality models are developed. OHDSI is 
leading research to establish best practices, answering important questions that will 
ensure future predictive models generate reliable evidence.”   

- Jenna Reps
2019 Titan Award for Methodological Research recipient
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With Patient-Level Prediction

Join The PLP Journey 
PLP GitHub: github.com/OHDSI/PatientLevelPrediction
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Members of the OHDSI community have published many papers 
together. Often, these studies are first showcased at our annual 
OHDSI Symposia, like the 2019 event pictured here. These events 
also provide opportunities for networking, which leads to new  
collaborations, and new collaborations lead to new evidence  
generation that impacts patients around the world. 
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VIII. OHDSI
Publications
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OhDsi publiCaTiOns

Collaborations Within
In this chapter, you will see 

both the depth and wide range of 
peer-reviewed publications that 
our community has produced 
over the last decade. How has 
OHDSI accomplished so much in 
so little time? 

We work together. 
This graphic highlights just 

how much our community  
collaborates to produce high- 
quality observational research.

Since our community  
writes many, MANY papers  
together, this graphic can’t 
have everybody in the  
perfect spot. But it clearly 
shows how the culture of  
‘we’ over ‘me’ has powered 
OHDSI to incredible heights.
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Our OHDSI Community
• Each dot is an OHDSI 

collaborator with at least 
2 OHDSI papers, which 
include studies involving 
OMOP

• Size of the dot  
indicates the number  
of OHDSI/OMOP papers

• The color indicates 
the first year someone 
wrote an OHDSI paper 
(see legend below)

• A line means two  
authors were on the 
same paper. The darker 
the color of the line, the 
more papers they  
co-authored

• The layout is based 
on co-authorships, so  
people who collaborated 
more end up close  
together in the graph

20222018201520122010
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Community DashboardCommunity Dashboard
The OHDSI Community Dashboard is a tool to highlight the progress we are  

making toward our mission and the collective accomplishments and impact of 
our community. A goal of the dashboard is help our community identify how 
members can see the OHDSI ecosystem as an interconnected system to make a 
larger impact.

PubMed Publication Tracking highlights scholarship generated using the OMOP 
Common Data Model, OHDSI tools, or the OHDSI network. These publications 
represent scientific accomplishments across areas of data standards,  
methodological research, open-source development, and clinical applications. 

There are also dashboards monitoring YouTube video tracking and EHDEN 
course tracking. 

Thank you to the team of Paul Nagy, Star Liu, Jody-Ann McLeggon, Asieh 
Golozar, and Adam Black for their leadership in developing this dashboard.

OhDsi publiCaTiOns
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Artwork by OHDSI collaborator Sarah Seager
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Cheers, From The OHDSI Community!Cheers, From The OHDSI Community!
2020 threatened to pull people apart, but the OHDSI community came 
closer together. Volunteer researchers from around the globe joined 
forces to study COVID-19 and other critical healthcare concerns. 
Collaboration in the spirit of open science drove us to do far more 
together than anybody could have done alone.

We also had a lot of fun in the process. To close our 2020 Global 
Symposium, we created a virtual “cheers” to celebrate our shared 
successes. To all of you who have done so much for the community, 
and to those of you who will join our future endeavors, CHEERS!

JOin The JOurney
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JOin The JOurney

A favorite part of every OHDSI Symposium is the closing talk,  
given by Patrick Ryan. Naturally, we figured the appropriate way to 
end this annual report was a closing letter from Patrick. 

Thank you for Joining The Journey with OHDSI!

Since as long as I can remember, I have loved sports. I love that 
sport is a meritocracy: at the start of any match, everyone has an equal chance to win. I love 
that there are objective criteria to determine success, clear rules that everyone must follow 
to play the game, clear goals to accomplish (like actually scoring goals!). At the end of any 
match, everyone knows who has won and lost.

Growing up, I especially loved playing team sports. Be it soccer, baseball or basketball, if 
there was a game to be played, I wanted to be in the action. I loved the competition, but I also 
enjoyed the comradery. I enjoyed the practices where we worked to improve our individual 
skills and also tried to perform better as a team. We would run drills one-on-one, two-on-two, 
five-on-five, each trying to focus on specific interactions between teammates. We’d rehearse 
set plays over and over to make sure everybody knew their role and were ready to execute. 
By gametime, we’d try our best to apply what we learned and see if we were good enough to 
earn the win. Together as a team, we shared the ‘thrill of victory or the agony of defeat.’  

While I loved playing on teams, I was acutely aware that I was never one of the best 
players. On the soccer pitch, I wasn’t fast, didn’t have the best drilling skills, couldn’t kick it 
the furthest. On the basketball court, I wasn’t tall, still wasn’t fast, couldn’t jump, wasn’t much 
of a shooter. My dad often coached me while I was young, and he was also acutely aware of 
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my lack of ability. He taught me two things: 1. You can’t control how naturally talented you are, 
but you can control how much work you put in to try to get better; 2. You shouldn’t focus just 
on yourself, but think about how you can help make your team better.

Fast forward many years later, Craig Sachson and I coached the Killer Dragons (they 
came up with their own name!), a U-10 soccer team in Ithaca, N.Y. Our team was comprised 
of all the ‘leftover’ kids who weren’t selected by any of the other teams in the league. We 
knew they weren’t the fastest, didn’t have the best dribbling skills, couldn’t kick it the farthest. 
We wanted to instill that same love of the game that we had, to get them to enjoy both the 
competition and the practices together. We wanted them to understand the value of team and 
the importance of teamwork. I don’t remember all the practice drills or game scores that  
season, but I’ll never forget when the Dragons scored their first (and only) goal during the final 
game, which came after a couple successful passes up-field between teammates. Watching 
those kids come together to celebrate their shared accomplishment is a memory I’ll never 
forget. 

For me, there’s nothing like the rush of team achievement, 
that feeling when you declare “we did it” and you celebrate 
and recognize how everyone came together to make it happen.

Herb Brooks, head coach of the ‘Miracle on Ice’ 1980 US hockey team that won Olympic 
gold, said, “When you pull on that jersey, you represent yourself and your teammates. The 
name on the front is a hell of a lot more important than the one on the back.” When a team 
has a shared purpose, it can have a powerful effect. Teams typically strive for common goals 
which are more ambitious than those that can be accomplished by individuals alone. Setting 
sights on a bigger objective can be motivating, but it can also feel intimidating on your own. 
With the support of a team, however, that shared objective can be broken into smaller pieces, 
and the specific tasks and contributions can seem more manageable and far less intimidating. 
When individual activities serve as building blocks, and teammates orchestrate how those 
blocks fit together, the team itself can build something great together. 

Teamwork scales accomplishment. One person can only do so much, 
no matter how talented or productive she is. You can’t play all positions on the field at once. 
Collaboration is hard, and it takes practice to figure out how to work together most effectively. 
Once those relationships are made and trust in teammates is formed, it becomes more com-
fortable to divide-and-conquer. The World Cup takes place later this year, and it represents 
one of the great team competitions in the world. Players like Messi, Ronaldo and Neymar are 
recognized around the globe, but none can win for their home countries on their own. You 
don’t win one on eleven, no matter how special the one might be. A winning team needs a 
great striker, versatile midfielders, strong defenders and a dependable goalkeeper. Despite 
having different individuals having different responsibilities and different skills within different 
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position groups, the team works as one and builds on each other’s successes. There is no 
‘me’ or ‘you’, there is only ‘we.’ Championships are often determined by the togetherness of 
the team. 

I was quite struck and  
inspired when Martijn Schuemie 
introduced the analogy of the 
CERN Large Hadron Collider 
to our community (see image, 
right). More than 10,000  
scientists across hundreds of 
universities and labs came  
together to build the world’s 
largest and highest- energy 
particle collider, and they have 
collaboratively conducted a 
wide range of large-scale  
experiments to answer some  
of the most fundamental  
questions in physics, such as 
detecting the Higgs boson. CERN is a marvel of modern engineering in terms of scale and 
precision, but it also required tremendous innovations in computing. Leaders in their  
respective disciplines could have chosen to focus on their own areas of interest, continuing to 
make incremental progress and producing quality scholarship in their local domains. Instead, 
they chose a path of multi-disciplinary collaboration, contributing their expertise  — often a 
small part of the bigger whole — to collectively enable transformational advances in science 
that no one individual or lab could possibly have the resources or capabilities to achieve 
alone. Together, they have published thousands of papers, often with thousands of co- 
authors, providing compelling evidence toward explaining phenomena across the universe. 
Part of the CERN mission is to “unite people from all over the world to push the frontiers of 
science and technology, for the benefit of all.” Imagine the thrill of being part 
of this team and playing your part, no matter how small, in 
something so big. 

What is our sport? Who is our team? How do we win?

I believe wholeheartedly in the potential for real-world evidence to fundamentally  
transform medicine by putting the collective learnings from past patient experience into  
practice for future patient care. I am confident that using observational data to characterize 
disease natural history and treatment utilization patterns from around the world, estimate the 
safety and comparative effectiveness of medical interventions, and predict health outcomes in 

The CERN team
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populations of interest can empower patients and providers to make more informed,  
evidence-based and personalized treatment decisions. I also recognize that transformative 
change won’t happen overnight and can’t be completed by one person alone. I remain  
passionate about OHDSI’s mission, “to improve health by empowering a community to  
collaboratively generate the evidence that promotes better health decisions and better care.” 
I believe the only way that our open-science community can 
succeed is through effective teamwork. If our sport is  
generating reliable evidence and our objective is to improve the 
lives of patients around the world, then that is a team I want to 
be on. That is a game I want to win.

Our team — the OHDSI community — already has a solid foundation. We have tremen-
dous depth, with 3,266 collaborators on the field. We have incredible talent at all the key 
positions, with world-leading experts in open community data standards, open-source devel-
opment, methodological research, and clinical applications guiding the way. A key strength of 
our team is diversity: we have strong representation across geographies, across disciplines, 
and across stakeholder communities. Our team has already demonstrated some of what 
we’re capable of:  

• Together as a team, we have established an open community data standard that is 
now used by more than 450 organizations in more than 40 countries around the world.

• Together as a team, we have developed a rich suite of open-source analytics tools, 
with a subset of the HADES packages having been downloaded >400,000 times by the 
broader research community.

• Together as a team, the EHDEN community has certified 47 small-to-medium size 
enterprises in best practices for data standards and OHDSI tool configuration,  
amassing a core group capable of supporting health care institutions around the world on 
their journey to evidence using the OMOP CDM and OHDSI analytics.

• Together as a team, we have empirically evaluated the performance of alternative  
causal inference methods for comparative effectiveness and safety surveillance,  
establishing the LEGEND principles for conducting large-scale analyses within disease areas 
of interest. 

• Together as a team, we have established best practices for patient-level prediction 
and built advanced machine learning tools to train and validate models across our  
network.

• Together as a team, we have created a textbook, 15 courses and >400 hours of  
educational content to train the broader research community on best practices in data  
standards and analysis

• Together as a team, we have published 475 scientific articles and generated  
evidence that has directly impacted clinical guidelines and regulatory policy.



96 #JoinTheJourneyOHDSI.org

JOin The JOurney
Yet, I would contend that our team is still just learning how to play together. 

We have many members in our community watching from the sideline, wondering if they 
should start to play and if the juice will be worth the squeeze. We have many data partners 
who have joined the journey by converting their data to the OMOP CDM, but relatively few 
who have contributed to an open network study. We have many users of OHDSI tools, but a 
much smaller number of contributors willing to communicate issues, recommend enhance-
ments, develop solutions, and support their fellow colleagues in their appropriate use. We 
have innovated in the area of phenotype development and evaluation, but have only begun 
to build a shared library of cohort definitions for expanded use across our community. We’ve 
completed an impressive number of OHDSI network studies, but many more studies remain 
isolated to a specific data source or institution. We have many workgroups that have made 
progress on their local ambitions, but haven’t yet coordinated all the activities to align with an 
over-arching objective.

I’m excited for what’s possible if we all work as one team with a shared sense of purpose, 
each of us focusing our efforts to make our own contributions toward a common goal. Brick 
by brick, when we put it all together, we can build something 
profound. We can build a healthier world together.

I can’t imagine a sweeter victory.

Patrick Ryan



How Can You Join The Journey?How Can You Join The Journey?
Our community has set both the foundation and the highest of standards for global collaboration around 

observational research. We continue to make real differences in healthcare, and we are doing it through  
transparent and reproducible science. We also recognize that there is so much more to be done, and so much 
more that we can do.

If you are inspired by what you read in this book, if you want to learn more about methods research or 
open-source development, if you have a clinical question you believe needs answering, or if you want to join 
a community of people dedicated to the team sport of observational health data sciences and informatics, we 
have a place for you. 

How can you get started?

Step One: Join The OHDSI Forums (forums.ohdsi.org)
Connect with other OHDSI collaborators on our community forums and start discussing how you can help 

us inform medical decision-making, or simply follow discussions that are interesting to you and learn about 
the work happening within our global community. 

Step Two: Join Our Workgroups & MS Teams Environment (ohdsi.org/ohdsi-workgroups)
OHDSI has 27 active workgroups that always seek new collaborators. Our workgroups present opportunities 

for all community members to find a home for their talents and passions, and a place to make meaningful 
contributions. Our workgroups collaborate inside the OHDSI MS Teams environment; a form to join our Teams 
environment is available here: bit.ly/Join-OHDSI-Teams.

Step Three: Join Our Community Calls (ohdsi.org/community-calls/)
Join collaborators around the world each week during our OHDSI Community Call, held Tuesdays at 11 am ET 

within our Teams environment. Following weekly updates, we have a variety of call formats, including  
research presentations, workgroup updates, discussions, debates and more. These calls are recorded, and 
you can access them (as well as the meeting link) at our Community Calls page. 

Step Four: Continue To Learn About OHDSI
Learn about OHDSI tools and research processes in a variety of ways.

• The Book of OHDSI (which is also translated into both Korean and Chinese) is a community-developed 
resource with information for every step of your journey: ohdsi.github.io/TheBookOfOhdsi

• Check out the EHDEN Academy, a set of free, on-demand training and development courses. These are 
open to anybody, but we always encourage new OHDSI collaborators to use this resource to learn about best 
practices towards our mission of improving health by empowering a community to collaboratively generate 
evidence that promotes better health decisions and better care: academy.ehden.eu

• Our OHDSI News page keeps you informed of recent news, publications, upcoming studies and more, 
while also profiling collaborators and providing other updates: ohdsi.org/ohdsi-news-updates

• Check out the OHDSI YouTube page (youtube.com/c/OHDSI) for many community-developed learning  
resources, including tutorials, research presentations and more. Follow OHDSI on both Twitter (@OHDSI) and 
LinkedIn (OHDSI) to keep updated on community research and follow the #OHDSISocialShowcase to see the 
research shared at our annual symposia.

Join The Journey
Your journey with OHDSI has started. Your interest in our global community is the first step in making a  

difference in global health. There is no limit to the impact you can make, and you can do so in a supportive, 
positive and fun environment. We invite you to search our website, post to the forum, join us in Teams, check 
out our GitHub (github.com/OHDSI), or reach out to us over email (contact@ohdsi.org).

Thank you for Joining The Journey with OHDSI!
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