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* Reproducibility crisis
e Lack of trust in real-world evidence

* Major issues:
— Observational study bias (e.g. confounding)

— Publication bias

b : PHILOSOPHICAL
P-hacking TRANSACTIONS A

rsta.royalsocietypublishing.org

Research Chos for

updates

Cite this article: Schuemie MJ, Ryan PB,
Hripcsak G, Madigan D, Suchard MA. 2018
Improving reproducibility by using
high-throughput observational studies with

empirical calibration. Phil. Trans. R. Soc. A 376:

20170356.

Issues with observational research

Improving reproducibility by
using high-throughput
observational studies with
empirical calibration

Martijn J. Schuemie', Patrick B. Ryan'2?,
George Hripcsak'>#, David Madigan' and Marc A.

Suchard'6-//8

10bservational Health Data Sciences and Informatics (OHDSI),
New York, NY 10032, USA
2Epidemiology Analytics, Janssen Research and Development,



Automated extraction of effect sizes from literature

=3 NCBI  Resources (¥} How To ¥/

Publ@eder  pubmes v |

Natonat netiutes o Heath Advanced

Abstract » Send to: ~

Help

RESULTS: In comparison with distant past users of BP, current users of BP showed an almost twofold increased risk of AF: odds ratio (OR)=1.78
and 95% Cl=1.46-2.16. Specifically, alendronate users were mostly associated with AF as compared with distant past use of BP (OR, 1.97; 95% CI

1.59-2.43).

Abstract

Bisphosphonate treatment is used to prevent bone fractures. A controversial association of bisphosphonate use and risk of atrial fibrillation has been
reported. In our study, current alendronate users were associated with a higher risk of atrial fibrillation as compared with those who had stopped
bisphosphonate (BP) therapy for more than 1 year.

INTRODUCTION: Bisphosphonates are widely used to prevent bone fractures. Controversial findings regarding the association between
bisphosphonate use and the risk of atrial fibrillation (AF) have been reported. The aim of this study was to evaluate the risk of AF in association with
BP exposure.

METHODS: We performed a nested case-control study using the databases of drug-dispensing and hospital discharge diagnoses from five Italian
regions. The data cover a period ranging from July 1, 2003 to December 31, 2006. The study population comprised new users of bisphosphonates
aged 55 years and older. Patients were followed from the first BP prescription until an occurrence of an AF diagnosis (index date, i.e., D), cancer,
death, or the end of the study period, whichever came first. For the risk estimation, any AF case was matched by age and sex to up to 10 controls
from the same source population. A conditional logistic regression was performed to obtain the odds ratio with 95% confidence intervals (Cl). The BP
exposure was classified into current (<90 days prior to ID), recent (91-180), past (181-364), and distant past (2365) use, with the latter category being
used as a reference point. A subgroup analysis by individual BP was then carried out.

RESULTS: In comparison with distant past users of BP, current users of BP showed an almost twofold increased risk of AF: odds ratio (OR)=1.78
and 95% Cl = 1.46-2.16. Specifically, alendronate users were mostly associated with AF as compared with distant past use of BP (OR, 1.97; 95% ClI

1.59-2.43).

CONCLUSION: In our nested case-control study, current users of BP are associated with a higher risk of atrial fibrillation as compared with those who
had stopped BP treatment for more than 1 year.

PMID: 25752621 [PubMed - indexed for MEDLINE] PMCID: PMC4428862  Free PMC Article
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F*LEGEND

LARGE-scALE EvIDENCE GENERATION AND EVALUATION IN A NETWORK oF DATABASES

OHDSI’'s LEGEND aims to generate reliable evidence by
following a set of principles that address

— Observational study bias (e.g. confounding)
— Publication bias

Journal of the American Medical Informatics Association, 27(8), 2020, 1331-1337

— P'haCk| N doi: 10.1083jamizjocaatos  # N INATZN\
g Perspective e

Perspective

Principles of Large-scale Evidence Generation and
Evaluation across a Network of Databases (LEGEND)

Martijn J. Schuemie ("?, Patrick B. Ryan', Nicole Pratt*, RuiJun Chen 3%,
Seng Chan You®, Harlan M. Krumholz’, David Madigan®, George Hripcsak®®, and
Marc A. Suchard®'°

School of Public Health, University of California, Los Angeles, California, USA, 3Depar‘tment of Biomedical Informatics, Columbia
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LEGEND Guiding Principles

1. LEGEND will generate evidence at a large scale.

2. Dissemination of the evidence will not depend on the estimated effects.

3. LEGEND will generate evidence using a prespecified analysis design.

4. LEGEND will generate evidence by consistently applying a systematic
process across all research questions.

5. LEGEND will generate evidence using best practices.

LEGEND will include empirical evaluation through the use of control
qguestions.

7. LEGEND will generate evidence using open-source software that is freely
available to all.

8. LEGEND will not be used to evaluate new methods.
9. LEGEND will generate evidence across a network of multiple databases.

10. LEGEND will maintain data confidentiality; patient-level data will not be
shared between sites in the network.
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LEGEND Guiding Principles

1. LEGEND will generate evidence at a large scale.
2. Dissemination of the evidence will not depend on the estimated effects.
(3. LEGEND will generate evidence using a prespecified analysis design. A
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Large-Scale Propensity Scores (LSPS)
e Construct large generic set of covariates

— 10,000 < n < 100,000

* Use regularized regression to fit propensity model

* Match or stratify on propensity score

1 International Journal of Epidemiology, 20~
&J doi: 10.1093fij¢
Originé =

Original article

Evaluating large-scale propensity score
performance through real-world and syntheti
data experiments

Yuxi Tian, Martijn J Schuemie? and Marc A Suchard 3

'Department of Biomathematics, David Geffen School of Medicine at UCLA, University of Cali
Los Angeles, CA, USA, %Epidemiology Department, Janssen Research and Development LLC, Titt

mm NJ, USA, *Department of Biostatistics, UCLA Fielding School of Public Health, University of Cali
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Best practice for addressing confounding
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Journal of Biomedical Informatics

EFI.SEVIER journal homepage: www.elsevier.com/locate/yjbin

Original Research

Adjusting for indirectly measured confounding using large-scale propensity
score
Linying Zhang?, Yixin Wang®, Martijn J. Schuemie ¢, David M. Blei ¢, George Hripcsak »%*

2 Department of Biomedical Informatics, Columbia University Irving Medical Center, 622 W. 168th Street, PH20, New York, 10032, NY, USA
b Department of Statistics, University of Michigan, 1085 S University Ave, Ann Arbor, 48109, MI, USA

¢ Janssen Research and Development, 1125 Trenton-Harbourton Road, Titusville, 08560, NJ, USA

d Department of Statistics, Columbia University, 1255 Amsterdam Ave, New York, 10027, NY, USA

¢ Department of Computer Science, Columbia University, 500 West 120 Street, Room 450 MC0401, New York, 10027, NY, USA

f Medical Informatics Services, New York-Presbyterian Hospital, 622 W. 168th Street, PH20, New York, 10032, NY, USA

ARTICLE INFO ABSTRACT

Keywords: Confounding remains one of the major challenges to causal inference with observational data. This problem



Measuring residual systematic error

Control questions:

— exposure-outcome pairs with known
effect size

— negative (and positive) controls
Empirical calibration:

— Adjust p-value and confidence interval
using estimates for controls

Statistics
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Research Article
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LEGEND Studies

* LEGEND principles initially tested in depression
 LEGEND Hypertension study has completed

e SCYLLA study also followed LEGEND principles

 Next LEGEND study is currently underway,
estimating effects of diabetes treatments

BM) Open Large-scale evidence generation and
evaluation across a network of
databases for type 2 diabetes mellitus
(LEGEND-T2DM): a protocol for a
series of multinational, real-world
comparative cardiovascular
effectiveness and safety studies

Rohan Khera @ ,"? Martijn J Schuemie @ **Yuan Lu @ ,'?
Anna Ostropolets © ,® RuiJun Chen,® George Hripcsak,>” Patrick B Ryan,>®
Harlan M Krumholz @ ,"? Marc A Suchard © 48910

14
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THE LANCET

Several high-impact LEGEND Hypertension papers

Hypertension

Comprehensive comparative effectiveness and safety of @R ®

first-line antihypertensive drug classes: a systematic,
multinational, l; Hypertension

Marc A Suchard, Martijn ) Schuemie, |

George Hripcsak, Patrick B Ryan
Summary ANTIHYPERTENSIVE TREATMENT
Background Uncertainty rema

mendingany primary agentar (COmparative First-Line Effectiveness and Sai

enzyme inhibitors, angiotensi

alaum el ockers.in- 0 ACE (Angiotensin-Converting Enzyme)
werhods we denened s on INTNIDITOTS @nd Angiotensin Receptor Blockers

and safety evaluation across r A Multinational Cohort StUdy

while minimising inherent b
cohort design to estimate the .~ .. .. — s ———— ~ A

JAMA Internal Medicine | Original Investigation

Comparison of Cardiovascular and Safety Outcomes
of Chlorthalidone vs Hydrochlorothiazide to Treat Hypertension

George Hripcsak, MD, MS; Marc A. Suchard, MD, PhD; Steven Shea, MD; RuiJun Chen, MD;
Seng Chan You, MD; Nicole Pratt, PhD; David Madigan, PhD; Harlan M. Krumholz, MD, SM;
Patrick B. Ryan, PhD; Martijn J. Schuemie, PhD

Pl <ainnleamant:

BETA-BLOCKER THERAPY

Comprehensive Comparative Effectiveness and
Safety of First-Line -Blocker Monotherapy in
Hypertensive Patients

Journal of the American Medical Informatics Association, 27(8), 2020, 1268—1277

doi: 10.1093/jamia/ocaa124 /\Ml/\

PROFESSIONALS. LEADING THE WAY.

Research and Applications

Research and Applications

Large-scale evidence generation and evaluation across a
network of databases (LEGEND): assessing validity using
hypertension as a case study

Martijn J Schuemie @,"? Patrick B Ryan,’? Nicole Pratt,* RuiJun Chen @®,3°
Seng Chan You,® Harlan M Krumholz,” David Madigan,® George Hripcsak,>® and
Marc A Suchard®"°
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Diagnostics

 Each LEGEND estimate comes with full diagnostics, e.g.
— Statistical power

— Covariate balance

— Systematic error as observed through negative controls
* Book of OHDSI chapter 19:

“On the basis of these diagnostics results, a

decision can then be made whether or not to
move forward with executing the final outcome

model.” How to make this
decision?

17



Interpreting diagnostics

* Diagnostics inform us on whether we can trust the results of a

study

* |'ve argued you shouldn’t
unblind results unless you
pass diagnostics

e LEGEND itself did not blind

* For LEGEND papers the
researchers checked the

diagnostics

Research
question

Werite protocol

Protocol: Full

(human-readable)
description

Full diagnostics

Implement study

Study package: Full

(machine-readable)
implementation

Execute diagnostics

Register protocol
& study package

Execute study

Without looking at the outcome of interest!

i
18



SCYLLA project

SARS-Cov-2 Large-scale Longitudinal Analyses on the
comparative safety and effectiveness of treatments under

evaluation for COVID-19 across an international observational
data network

 LEGEND-like study into the safety and effectiveness of drugs
proposed to treat COVID-19.

— 650 treatment comparisons
— 31 outcomes of interest

— Several different analyses

19



SCYLLA's approach to diagnostics

* Pre-defined rules for
— Equipoise
— Covariate balance
— Statistical power

* Only unblind results that met all diagnostics
* Only a small fraction (1.5% - 8.9%) met all diagnostics

20



Challenges with study diagnostics

Interpretation of diagnostics is currently subjective.
Failing a diagnostic should mean you stop the study.
That is a big ask when

— You’ve invested a lot of time and energy in the study

— You've already looked at the result

Failing a diagnostic is currently not publishable
— No credit for your hard work

— Others who do not evaluate diagnostic will publish potentially
unreliable evidence anyway

21



Diagnostics are hard!
Are they worth it?
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Objective diagnostics are!
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OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS

Who We Are v  OHDSI Updates & News v  Standards Software Tools OHDSI Studies v Book of OHDSI v Resources v New To OHDSI? v
OHDSI Community Calls v Events & Past Collaborations v Workgroups v EHDEN Academy v This Week In OHDSI Our Joumney (PDF)

Publications Support & Sponsorship v 2022 OHDSI Symposium v 2022 APAC Symposium Newsletters v Follow OHDSI on Social v

OHDSI Community Calls Video

Everybody is invited to the weekly OHDSI community
call, which takes place each Tuesday at 11 am ET. r
These calls are meant to inform and engage our

community through a variety of call formats, including
community presentations, working group updates,

Upcoming OHDSI Community Calls

breakout sessions, focus topics, newcomer-focused Lol oo
. . . Welc To OHDSI
sessions, and more. The upcoming schedule is -
. . Future Directions For OHDSI
available to the right. g PR

Collaborator Showcase Presentations

Use this link to get to the weekly meeting. Open Netwark Studies
OHDS! “Speed Dating™

Videos and slides from previous 2022 calls will be Sy Dt
posted below. All presentations from 2021 community Ll
calls can be found here. Both videos and slides from

What should we accomplish

How Did We Do In 20227

Holiday-Themed Final Call of 2022

[ o |
community calls prior to 2021 remain available. I " ?
&) @oHps www.ohdsi.ong #loinThelourney [3 ohdsi t O g e t e r I 2 2
el

= Jan. 11: What Can We Accomplish Together in 2022 (Patrick Ryan)

Patrick Ryan led the first OHDSI Community Call of 2022 with a presentation about what
OHDSI can accomplish together this year. While the community listed and voted upon

several objectives, Patrick discussed his hope to develop a system to generate evidence ‘
) Welcome To OHDSI in 2022!

that characterizes disease and treatment utilization, estimates the effects of medical
interventions, and predicts outcomes of patients within a network of observational health

databases. OHDSI

Watch on 2 YouTube

Other aspects of the discussion included a look at OHDSI workgroups and how they can
continue moving forward, 2021 achievements, and more. Both video of the presentation
and Patrick’s slides are available below.




Current status quo in observational research makes it
challenging to build trust in evidence

Does the study provide an unbiased effect estimate?
Are the findings generalizable to the population of interest?

methodological
concerns

data
quality?

methods
bias?

measurement
error?

Implement Disseminate
analysis evidence

Select
cohorts

Curate
data

Write
Protocol

programming
correct?

ETL
correct?

logic
correct?
technical
Protocol concerns

Review

Can the study be fully reproduced?
Does the analysis actually do what the protocol said it would do?

from 11Jan2022 OHDSI call



Engineering open science systems that build trust into the
real-world evidence generation and dissemination process

'SVStng'qL‘?ﬁe“;rsgeer:igzgf: Distributed data network, standardized to common data model
Analysis specifications - - - - - - - - - - - -
Decision threshold S
SEBONEIESIONS Network coordination

Data quality evaluation

Database Pass

Fail Phenotype development and evaluation

Cohort Cohort Pass
definitions diagnostics

Analysis reliability evaluation

Analysis
design
choices

Study
diagnostics

System characteristics:

e Standardized procedures with defined inputs and outputs

* Analysis packages implementing scientific best practices
consistently applied across all data partners, generating consistent

output for network synthesis un;:‘na;ed
e Reproducible outputs generated by open-source analysis libraries results
developed and validated with verifiable unit-test coverage
* Pre-specified and objective decision thresholds for go/no go criteria e

exploration

e Measurable oeeratinﬁ characteristics of sxstem Eerformance
from 11Jan2022 OHDSI call



Database diaghostics

* Challenge: Database selection is often subjective and
opportunistic, based on pre-conceived notions of data acceptability

 Opportunity: Provide objective criteria with pre-specified decision
thresholds for identifying candidate databases across a network
that may be eligible for contributing to an analysis, without
requiring direct data access

* Approach: Using only aggregated summary statistics from each
data partner (via ACHILLES), assess data fitness-for-use in terms of
patient demographics, domain coverage, longitudinality, and
capture of target/comparator/outcome




&« > C @ github.com/OHDSI/DbDiagnostics

O Search or jump to... Pull requests Issues Marketplace Explore

& OHDSI / DbDiagnostics ' public <X Edit Pins ~

<> code (@ Issues 1 11 pullrequests @ Actions [ Projects [0 wiki @ Security | Insights &3 Settings

¥ main ~ P 1branch ©1tag Go to file Add file ~ m About e
Package to profile a database and
ﬂ clairblacketer Correct output format from wide to long se79asc 20 hoursago ) 45 commits execute data diagnostics based on
individual analysis settings
lm R Correct output format from wide to long 20 hours ago
0 Readme
extras completed code review 13 days ago ¢r Ostars
B inst Correct output format from wide to long 20 hours ago ® 11watching
B man Correct output format from wide to long 20 hours ago ¥ Oforks
3 .Rbuildignore Add executeDbDiagnostics function 15 days ago
... . . Releases 1
3 .gitignore Cleaning up files 5 months ago
f DbDiagnostics v0.1 ( Latest)
D DESCRIPTION Use writeCsv function from CohortGenerator 7 days ago © on Ma g —
on May >
[ DbDiagnostics.Rproj Fix name of .Rproj file 8 days ago
3 NAMESPACE completed code review 13 days ago Packages
[ READMEmd Update README.md 14 days ago
‘= README.md Y

Contributors 3

DbDiagnostics README § corvisciers

The executeDbProfile function in this package relies on the Achilles and DataQualityDashboard packages to run a g msuchard Marc Suchard
subset of characterization and data quality analyses. This subset is referred to as the database profile. This profile will

- . O fdefalco Frank Derfalco
be used to determine if a database has the necessary elements required to run a study.

It works by connecting to a database through a connectionDetails object created by the DatabaseConnector package.
It will then check to see if Achilles results are already present. If so, it will export those results. If not, it will run the
required Achilles analyses and then export. Then, it will run a set of DataQualityDashboard checks and export those
results as well.

Languages

® RB4T% Roff 15.3%
Once the results are generated they are then loaded to a separate results schema. The executeDbDiagnostics
function will take in a list of analysis settings to compare against the dbProfile results to determine if a database is



Database diagnostics in action

Study size estimate

Database diagnostic criteria
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Phenotype diagnostics

* Challenge: Phenotype algorithms to identify exposures and
outcomes are subject to measurement error which can cause
misspecification bias in analyses

 Opportunity: Provide objective criteria with pre-specified decision
thresholds for evaluating the adequacy of candidate phenotype
algorithms within each database across a network

* Approach: Develop a standardized process for developing
phenotype algorithms and estimating all dimensions of
measurement error (sensitivity, specificity, positive predictive
value, index date misspecification) to determine the extent to
which the magnitude of error will bias study results




Encouraging progress in 2022 on phenotype
development and evaluation...

Sunday Monday Tuesday Wednesday Thursday Friday Saturday P

Type 2 . . . . .
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Cohort Diagnostics

<[> Cohort Definition

Orphan Conc
Cohort Counts

Incidence Rate

haracterization

Open-source tools to support phenotype
development, evaluation, and dissemination

Capr 1.0.3 Reference Articles ~ Changelog IfHHADES

Capr Links

Browse source code

Report a bug

Capr is part of HADES.

e . - Ask a question
Cohort definition Application Programming in R A questior

nse

Cohort Definition

Cohort 1d
O 345
366
O 369
O 576
O 601
O 609
O 610
O 611
620
O 622
O 624
O 627
O 622
O 635
O 1068
O 1075
1077
O 1079
O 1u2
O 1125

1-20 of 239 rows

Show

| n t rod U Ct| O n A-pache License 2.0

Capr is an R package to develop and manipulate OHDSI cohort definitions. This package assists in creating a cohort definition that can
be compiled by circe-be using CirceR. Cohort definitions developed in Capr are compatible with OHDSI ATLAS. Additionally the package
allows for development of cohort design components, sub-items of a cohort design that are meant to be reusable and mutable to assist

creating cohorts in study development.

Cohort Name Martin Lavallee
Author, maintainer

SySte m Req U | re m e n tS PhenotypeLibrary 3 Reference Articles

Requires R (version 3.6.0 or higher). Installation on Windows requires RTools. Libraries used in Capr require Java. Capr |
[COVID AESI] Stress ¢ =~ connection to an OMOP vocabulary database to query concepts.

Sovedto s P Phenotypelibrary

[COVID AESI] Persons with heart failt

[COVID AESI] Broad arthritis incident | n Sta l Iat| on

[COVID AESI] Disseminated intravasc

[COVID AESI] Anaphylaxis events

PhenotypelLibrary is part of HADES.
1. See the instructions here for configuring your R environment, including RTools and Java.

2.In R, use the following commands to download and install Capr: | ntl’Od u Ctl O n

install.packages("remotes")

ges(

remotes::install_github(“ohdsi/Capr™)

[COVID AESI] Guillain Barre syndrom

[COVID AESI] Transverse myelitis (or

PhenotypeLibrary is a repository to store the content of the OHDSI Phenotype Library (Library). These phenotype/cohort definitions
have under gone an OHDSI best practice Phenotype Development and Evaluation Process by the OHD
lork group, through a OHDSI community wide collaboration effort, evaluates and maintains

[COVID AESI] Persons with Type 1 Di:

SI Phenotype Development and
[COVID AESI] Cerebral venous sinus 1 )

on Work group (work group). This \

[COVID AESI] Acute Kidney Injury eve cohort definitions in an Atlas instance. Definitions that have graduated through this process are published in this repository, and are
thus considered high quality cohort definitions.

[COVID AESI] Pulmonary Embolism events

cohortld’s in this repository are persistent (similar to OMOP Concept Id) i.e. once published it maybe expected to stay the same between

releases of the Phenotype library (i.e. backward compatible). Version numbers in this repository follows HADES convention, and

[COVID AESI] Immune thrombocytopenia (ITP) events changes (addition or deletions) are reported as News. W
including deprecation and additions.

[COVID AESI] Narcolepsy events

Work group will be responsible to maintain a cadence for the cohort life cycle -

[COVID AESI] Deep Vein Thrombosis (DVT) events
[COVID AESI] Composite venous thrombotic events - Deep Vein Thrombosis OR Pulmonary ...

Features

Contains all phenotypes (i.e. cohort definitions) that have been approved by the OHDSI Phenotype Development and Evaluation
workgroup.
Phenotypes are available as SQL statements and JSON.

[COVID AESI] Myocarditis Pericarditis events

[COVID AESI] Immune thrombocytopenia (ITP) OR Hemolytic Uremic Syndrome events

[COVID AESI] Myocarditis events

[COVID AESI] Thrombosis (Arterial) with Thrombocytopenia (diagnosis or measurement) ev...

and CohortD ostics. See accompanying vignettes.

[COVID AESI] Thrombosis (Venous) with Thrombocytopenia (diagnosis or measurement) ev...
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PheValuator 2.0: Methodological improvements for the PheValuator
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ABSTRACT

Purpose: Phenotype algorithms are central to performing analyses using observational data. These algorithms
translate the clinical idea of a health condition into an executable set of rules allowing for queries of data ele-
ments from a database. PheValuator, a software package in the Observational Health Data Sciences and Infor-
matics (OHDSI) tool stack, provides a method to assess the performance characteristics of these algorithms,
namely, sensitivity, specificity, and positive and negative predictive value. It uses machine learning to develop
predictive models for determining a probabilistic gold standard of subjects for assessment of cases and non-cases
of health conditions. PheValuator was developed to complement or even replace the traditional approach of
algorithm validation, Le., by expert assessment of subject records through chart review. Results in our first
PheValuator paper suggest a systematic underestimation of the PPV compared to previous results using chart
review. In this paper we evaluate modifications made to the method designed to improve its performance.

Methods: The major changes to PheValuator included allowing all diagnostic conditions, clinical observations,
drug prescriptions, and laboratory measurements to be included as predictors within the modeling process
whereas in the prior version there were significant restrictions on the included predictors. We also have allowed

the temporal relationships of the predictors in the model. To evaluate the performance of the

C h e C k O ut J Oe | Swe rd e IIS ompared the results from the new and original methods against results found from the liter-

posters #66 and 67

nal validation of algorithms for 19 phenotypes. We performed these tests using data from five

ent aggregating all phenotype algorithms, the median difference between the PheValuator

erre-aregold standard estimate for PPV was reduced from 21 (IQR - 34, - 3) in Version 1.0 to 4 (IQR
3, 15) using Version 2.0. We found a median difference in specificity of 3 (IQR 1, 4.25) for Version 1.0 and 3
(IQR 1, 4) for Version 2.0. The median difference between the two versions of PheValuator and the gold standard
for estimates of sensitivity was reduced from 39 (-51, -20) to 16 (-34, - 6).
Conclusion: PheValuator 2.0 produces estimates for the performance characteristics for phenotype algorithms
that are significantly closer to estimates from traditional validation through chart review compared to version
1.0. With this tool in researcher’s toolkits, methods, such as quantitative bias analysis, may now be used to
improve the reliability and reproducibility of research studies using observational data.

Table 3

Differences in estimates for Positive Predictive Value from PheValuator Version
1.0 and 2.0 and the gold standard estimates from prior validation studies.

Pozitive Predictive Value

Difference
Therapeutic Version 1.0 Version 2.0
Area Condition Median (IQR) Median (IQR)
Overall Overall (all therapeutic ~21 (-34, -3) 4(-3,15)
areas)
Cardiovascular Overall (Cardiovascular) ~25(-34, -18) 0(6,49
Arrial Fibrillation -32 (-39, —28) -2(3,1)
Pulmonary Embolism —38 (-46, ~1.5(-8.25,
—~24.25) 3.25)
Venous —18 (-25, -5) ~3(-14, 3)
Thromboembolism
Ischemic Stroke -22.5(-28, 42,5
~-19.75)
Myocardial Infarction -31 (-39, -20) -1 (-6.5,0.5)
Immunology Overall (Immunology) ~27 (-39, —4) 7 (-2, 30.25)
Ankylosing spondylitis ~51 (-59, ~2.5(-10, 5)
~41.8)
Atopic dermatits -8 (-16.5, -2) 39 (26.5,
42.5)
Ulcerative Colitis -31 (-37.5, ~1(-8.75, 4)
21.25)
Crohns Diseasze -32.5 (-39, 2(-6,2.75)
26.25)
Rheumatoid Arthritis 6 (-11, 16) 38 (23, 48)
Pzoriasis -23 (-34, -6.5) 9 (-3, 26)
Systemic Lupus 34 (-4255, 80,9
Erythematosus 30)
Infectious Overall (Infectious 1(-125,3) 2(-3,6)
Dizease dizeaze)
Viral Hepatitis C 2.5(-11.5, 3) 0.5 (-3, 3.78)
Viral Hepatitiz B 1(-145,1) 5 (-5.5, 8)
Neurology Overall (Neurology) 24 (-31.75, 7 (-8, 12.785)
17)
Autizm 31.5 (-36, 2.5 (-5.25,
26.5) 7.5)
Bipolar 28 (-31.5, 13(11.5,
26.25) 14.75)
Epilepsy 20 (-24, 7 (-18.75,
10.75) 0.5)
Oncology Overall (Oncology) 1(-4,45) 14 (10, 18)
Multiple Myeloma 0(-3.25, 6.5) 13.5 (10, 22)
Prostate Cancer 2(-4,1.25) 14 (9.5, 16.5)
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Defining the valid analytic space for quantitative bias analysis in pharmacoepidemiology
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BACKGROUND

Bias from outcome misclassification is QBA prOd uces im pla USi ble or i nva I id

acknowledged but rarely corrected in
observational comparative safety and
effectiveness research

Quaniiatve bios analyss (QBA)can outcome misclassification-corrected

correct effect estimates subject to outcome
misclassification using incidence
proportion and estimated measurement
errors

produce negative corrected event
counts that invalidates results

OBJECTIVE effect estimation scenarios

Determine which combinations of
observed effect estimates, incidence

proportions, sensitivity and specificity o
values produce valid and invalid -Icl-’
corrections [
METHODS

Created grid space of:

o 6 outcome incidence proportions (IP)
[107, 102, 103, 104, 10%, 109

o 6 uncorrected odds ratios (OR)
[1, 1.25, 1.50, 2, 4, 10)

o 20 outcome sensitivity values
[0.05 to 1.00 by 0.05)

o Specificity precision is dependent on
outcome IP, so specificity values were
generated within each level of IP. 20

IP=10"-2

Specificity
IP=10"-3

S estimates in most common comparative

Piiié

SEEE

RESULTS

o Minimum required specificity for valid QBA
correction was inversely proportional to IP.
Minimum specificity required for valid QBA
correction is 0.91, observed where IP=10"1.
o Where IP=10%, minimum required
specificity is 0.9999911
o Lower value sensitivity variation at higher IP
affected OR correction, but where incidence
was 51079, only specificity materially
affected correction
o Empirical results showed ischemic stroke IP
as ~10-2 with measurement error variability
across databases
o At higher uncorrected ORs, these
measurement error values would
considerably impact estimates
o E.g., at uncorrected OR=4, the
corrected estimate would be inflated
>3x in three of five databases

DISCUSSION

There is considerable IP-OR-sensitivity-
specificity analytic space where QBA for
outcome misclassification correction is
implausible or invalid

o Correction with imprecise specificity is
problematic because small specificity
changes can make implausible large OR
adjustments

Impact of sensitivity on correction is limited }
where IP<102

0

0

specificity values were defined as 1-
incidence to 1.00 by 5%ile
Complete space: 14,440 2x2 contingency
tables, each with 1m target and 1m
comparator exposures and associated
inputs

IP=10"4

Check out Jamie Weaver’s poster from
OHDSI EU 2022, and join the Phenotype
Workgroup activity this Sunday!

IP=10"-5

For each IP-OR combination, we
computed a distribution of QBA-corrected
ORs across combinations of sensitivity
and specificity values and plotted their
contours

We estimated the sensitivity, specificity,
and IP of ischemic stroke in 5
observational databases (labeled as
Source in figure) using probabilistic

OR=1.25 OR=1.5 OR=2
Sensitivity
Source ® IBMCCAE B IBMMDCO @ BMMOCR A Opum DOD

Figure 1. QBA-corrected OR contour plots across 4-dimensional grid space of IP,
uncorrected OR, sensitivity, and specificity. Black data points are the uncorrected OR

(sensitivity = specificity = 1) and maximum valid OR of the comrected OR distribution across
A reime sensitivity and specificity values for each IP-uncorrected OR combination. Blue lines display
reference standard validation and plotted the corrected OR contour for the 25%ile, 50%ile, and 75%ile of the corrected OR

their location on the analytic space distribution. Red data points are database-specific, empirical QBA-corrected estimates from

a study assessing the risk of ischemic stroke between new users of angiotensin-converting
enzyme inhibitors and angiotensin receptor blockers with hypertension.
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Study diagnostics

* Challenge: Analyses risk producing misleading estimates due
to study design and analytical choices and their application to
data.

 Opportunity: Provide objective criteria with pre-specified
decision thresholds for evaluating the reliability of analyses

with respect to precision, accuracy, and generalizability within
each database across a network




Study diagnhostics

e Characterization

— Feature summary, incidence, cohort pathways
* Temporal stability, subpopulation heterogeneity, heterogeneity across data sources

e Population-level Estimation

— Comparative cohort

e Statistical power, comparator similarity, between-person confounding,
generalizability, residual bias

— Self-controlled case series

 Statistical power, time-varying confounding, protopathic bias, residual bias
— Meta-analysis

 Statistical power, heterogeneity across data sources

* Patient-level prediction




Developing objective
metrics to diagnose
PatientLevelPrediction

del desi ] [ ] [ ]
e e PatientLevelPrediction
INTRO: u [}
e NOW INCludes functions
Investigations into why often

identify poor methodology or

== to diagnose potential

» PROBAST is a review guideline for
methodology considerations when a -
prognostic models are developed to
e Issues (flaws) with
* In this study we propose objective
measures taking into account

PROBAST considerations that can -
model design when

prediction study design.

METHODS . ct
Given a model design and OMOP CDM a I e O a S e C I I C Figure 1: Example output of the new diagnostic functions as displayed in
database, metrics/plots were a diagnostic table in PatientLevelPrediction protocol.

developed based on the four PROBAST

aspects:
Diagnostic Plots
Participants: investigates whether a a a S e = —

there are any issues in the design o
that may limit the generalizability of =1
the model. : -

= Predictors: investigates whether the -
predictors (aka Lt
covariates/independent variables) 1
are suitable. That is, do they only B s
include data that would be available § i
when the model is intended to be ]
used? o

» Qutcomes: investigates whether the '
outcome definition is correct and is W
a commonly used definition. Is the Figure 2: Example diagnostic plot to inspect the outcome definition and
database suitable for the outcome? timing. In the example above the outcomes occur uniformly across the

» Design: investigates whether the 30 days after index. Depending on the prediction task, this plot may help

analysis is suitable. Is there sufficient identify issues with the outcome definition or target population.
Specific considerations are detailed in

Check out Jenna Reps’
A e fction dgpcsePlha o poster #53

added into PatientLevelPrediction >=

v5.4.0 to calculate these metrics/plots. Ja nssen q ; c r
OO MWNeon
’ 0 C’ -

This function can be used to identify
OHDSI

Take a picture to
download the full paper

potential model design issues.



4 Focus for today: Establishing objective study diagnostics for
b comparative cohort analyses for population-level estimation

'SVStng'qL‘?ﬁe“;rsgeer:igzgf: Distributed data network, standardized to common data model
Analysis specifications - - - - - - - - - - - -
Decision threshold S
SEBONEIESIONS Network coordination

Data quality evaluation

Database Pass

Fail Phenotype development and evaluation

Cohort Cohort Pass
definitions diagnostics

Analysis reliability evaluation

Analysis
design
choices

Study
diagnostics

System characteristics:

e Standardized procedures with defined inputs and outputs

* Analysis packages implementing scientific best practices
consistently applied across all data partners, generating consistent

output for network synthesis un;:‘na;ed
e Reproducible outputs generated by open-source analysis libraries results
developed and validated with verifiable unit-test coverage
* Pre-specified and objective decision thresholds for go/no go criteria e

exploration

e Measurable oeeratinﬁ characteristics of sxstem Eerformance



Statistical power:
Minimum detectable relative risk (IVIDRR)

Statistical power of a hypothesis test is the probability of detecting an effect if a
true effect exists (1-Type Il error)

— Power analyses often conducted for interventional studies involving subject enrollment
or non-interventional studies requiring primary data collection to determine the sample
size that needs to be obtained, given the hypothesized effect size and background

incidence

— Given that sample size already exists when conducting non-interventional studies
involving secondary use of existing clinical data, power analyses can be reformulated as:
‘given the available data, what effect size would the analysis be able to detect?’

More data provides greater power
— Design and analysis choices impact how much data are used to generate estimates

Potential diagnostic: how much data is sufficient to provide useful information?




Statistical power:
Minimum detectable relative risk (MDRR)

K

(AII else equal, we should all\ - ....but it’s not straightforward to A
agree that it’s better to have determine if less data is better than no
more data than less data, to data at all. Is the risk of misinterpreting

improve precision in our underpowered estimates worth the
marginal information gain?

estimates...
I\ J

les$
data da’ta



Statistical power:
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COMMENTARY
Causal analyses of existing databases: no power calculations required

Sample size considerations are needed for the causal
analyses of existing databases
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Abstract

A few things to conside
not to conduct underpo

Journal of Clinical
Observational databases are often used to study causal questions. Before being granted access to data or funding, researchers may

need to prove that “the statistical power of their analysis will -
imprecise estimates, will not be approved. This restrictive attituc
A key misunderstanding is the belief that the goal of a causz
that are either detected or undetected; causal effects are numeric
the effect as unbiasedly and precisely as possible, the solution «
observational analyses with imprecise estimates, but rather enco
have multiple studies with imprecise estimates than having no st
them and provide a more precise pooled effect estimate. Therefc
data cannot be that our estimates will be imprecise. Ethical ar
which place individuals at risk are not transferable to observatic
If a causal question is important, analyze your data, publish y
The alternative is an unanswered question. @ 2021 Elsevier Ir

Clinical
ELSEVIER 2022) 193-193

Joumnal of Clinical Epidemiology 144 (

COMMENTARY

Causal analysis of existing databases: no power calculations required.
Responses to Campbell, Morris and Mansournia, et al
Miguel A. Herndn®"*

*CAUSALab, Harvard TH. Chan School of Public Health, Boston, MA
"Depanmems of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health. Boston MA 6174320101

Accepted 30 November 2021; Available online 4 December 2021

Minimum detectable relative risk (MDRR) ;

Joumnal of Clinical Epidemiology 141 {

Journal of

Epidemiology

Results

Journal of
Clinical
Epidemiology

LETTER TO THE EDITOR

Author statement

ptualization, writ-

Journal of
Clinical
Epidemiology 1ad Ali Mansournia
Journal of
Clinical
Epidemiology
Epidemiology 142 (2022) 261-263 ———————
~ NTARY

s: the importance of understanding
a before analysis (commentary on
an)

arten van Smeden”

Tinical Trials and Methodology, London, UK
tv Medical Center, Utrecht University, Utrecht, Netherlands

able online 22 September 2021

cisely as possible.” We note in passing that the hypotheti-
cal “socially alarmed” groups in the Hypothetical example
may simply be interested in the binary signal of whether
or not the unusual thrombotic events in vaccinated young
people were made less unusual by the vaccine. However,
we agree with the notion that the plausible magnitude of
such an effect is important. Hemndn's proposed solution is
for groups to conduct causal analyses of several existing
available data sources, which would subsequently be syn-
thesised in a meta-analysis. This is a worthy goal. It also
places a possibly-unbearable burden on systematic review-




Statistical power: ;
Minimum detectable relative risk (MDRR)
Examples from LEGEND-HTN

Good:
T = lisinopril All databases have MDRR < 1.75 (ability to detect 75%
increased risk if present), and 5 databases have MDRR < 1.1

(ability to detect 10% increased risk)

C = hydrochlorothiazide
O = cough

Table 1a. Number of subjects, follow-up time (in years), number of outcome events, and event incidence rate (IR) per 1,000 patient ye?g (PY) in the target (Lisinopril) and
comparator (Hydrochlorothiazide) group after stratification, as well as the minimum detectable relative risk (MDRR). Note that the IR doesWot account for any stratification.

Target Comparator Target Comparator Target Comparator Target IR (per

Source subjects subjects years years events events 1,000 PY)
CUMC 3,565 3,387 4,563 5,585 284 288 62.23

IMSG 2,980 1,443 2,034 683 96 26 4719

MDCD 45,283 24,993 20,591 9,038 3,249 1,206 157.79

MDCR 60,853 28,461 48,503 22,586 4,831 1,514 99.60

Optum 364,307 154,543 261,838 100,906 25,947 7,631 99.10

CCAE 548,859 243,878 380,386 163,469 30,942 9,419 81.34

Panther 583,608 189,242 207,470 66,877 21,366 5,369 102.98
Summary 1,609,455 645,947 925,388 369,118 86,715 25,453 93.71



o Statistical power: oo __
/48 Minimum detectable relative risk (MDRR) T
Examples from LEGEND-HTN

Bad:
T = candesartan

All databases have MDRR > 6 (underpowered to detect 600%
increased risk if present), and two databases have MDRR > 15
<5 cases in target and comparator

C = chlorthalidone
O = rhabdomyolysis

Table 1a. Number of subjects, follow-up time (in years), number of outcome events, and event incidence rate (IR) per 1,000 patient years (PY) in tiWjarget (Candesarf
comparator (Chlorthalidone) group after stratification, as well as the minimum detectable relative risk (MDRR). Note that the IR does not account for anNgtratification.

Target Comparator Target Comparator Target Comparator Target IR (per Comparator IR
Source subjects subjects years years events events 1,000 PY) 1,000 PY)
Optum 4510 7,682 3,394 5,037 <5 <5 <1.47 <0.99
CCAE 4,897 14,092 4179 8,519 0 <5 0.00 <0.59
Panther 3,148 15,105 877 5,626 0 <5 0.00 <0.89



Empirical Equipoise:
Preference score

 Randomized clinical trials assign treatment with each subject having the same
probability of being each intervention

— A 1:1 randomized head-to-head trial gives all subjects a 50% chance of being assigned to the target

exposure and 50% chance of being assigned to the comparator, regardless of patient/provider
characteristics

— Randomization allows for assumption that persons assigned to target cohort are exchangeable at
baseline with persons assigned to comparator cohort

* Non-interventional studies involve observing treatment choices, which can be
influenced by patient or provider characteristics
— Comparator selection is a pre-analysis design choice
— Preference = probability of patient choosing target vs. comparator treatment, given baseline features

— Preference = 50% means indifference between treatments for a patient, akin to random assignment

* Potential pre-adjustment design diagnostic: what proportion of the target population is
close to treatment indifference?



Empirical Equipoise:
Preference score

Comparative Effectiveness Research Dovepre
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METHODOLOGY

A tool for assessing the feasibility of comparative
effectiveness research
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Background: Comparative effectiveness research (CER) provides actionable information for
health care decision-making. Randomized clinical trials cannot provide the patients, time hori-
zons, or practice settings needed for all required CER. The need for comparative assessments
and the infeasibility of conducting randomized clinical trials in all relevant areas is leading
researchers and policy makers to non-randomized, retrospective CER. Such studies are pos-
sible when rich data exist on large populations receiving alternative therapies that are used as-if
interchangeably in clinical practice. This setting we call “empirical equipoise.”

Objectives: This study sought to provide a method for the systematic identification of settings
it in which it is empirical equipoise that offers promised non-randomized CER.

Methods: We used a standardizing transformation of the propensity score called “preference”
to assess pairs of common treatments for uncomplicated community-acquired pneumonia and
new-onset heart failure in a population of low-income elderly people in Pennsylvania, for whom
we had access to de-identified insurance records. Treatment pairs were considered suitable for
CER if at least half of the dispensings of each treatment-pair member fell within a preference
range of 30% to 70%.

Results

Methods

A prioritization tool

We propose the following algorithm.

1. Identify an environment with longitudinal health care data
for a large population in which CER may be relevant. The

5. Accept drug pairs as emerging from empirical equipoise
if at least half of the dispensings of each of the drugs
are to patients with a preference score of between 0.3
and 0.7.

and health characteristics. This preference score was obtained
by subtracting the natural logarithm of Treatment A preva-
lence divided by Treatment B prevalence from the logit of
the propensity score, and taking the anti-logit (expit) of the
result. In the resulting equation (Equation 1), in the universe
of persons receiving either Treatment A or B, F and § are
the preference score and propensity score for receiving
Treatment A, respectively, and P is the fraction of persons
receiving Treatment A:

— W) o

1-F 1-§ 1-P



Empirical Equipoise:
Preference score
Examples from LEGEND-HTN

Good:
T = valsartan

Even with >40,000 patients on each drug, large-scale
propensity score model could not meaningfully discriminate
between the two treatments; >90% of persons in ‘empirical
equipoise’ with a preference score between 0.3 and 0.7

C = olmesartan
DB = CCAE

[ vaisartan [l Oimesagaa

(90.8% is in equipoise/

0.00 0.25 0.50 0.75 1.00

Preference score
| | e

Figure 2. Preference score distribution. The preference score is a transformation of the propensity score that adjusts for differences in the sizes of the two treatment groups. A
higher overlap indicates subjects in the two groups were more similar in terms of their predicted probability of receiving one treatment over the other.



Empirical Equipoise:
Preference score
Examples from LEGEND-HTN

Bad:
T = valsartan
C = chlorthalidone
DB = CCAE

Baseline characteristics can clearly discriminate most new
users of valsartan vs. chlorthalidone; <30% of persons in
‘empirical equipoise’ with a preference score between 0.3
and 0.7

[ vaisartan ] Chiorthalidops

[27.9% is in equipoise|

0.00 0.25 0.50 0.75 1.00

Preference score
| | o —

Figure 2. Preference score distribution. The preference score is a transformation of the propensity score that adjusts for differences in the sizes of the two treatment groups. A
higher overlap indicates subjects in the two groups were more similar in terms of their predicted probability of receiving one treatment over the other.



Covariate balance:
Standardized mean difference

Confounder

PR

Exposure » Qutcome

* Confounding variables associated with both exposure and outcome can
bias effect estimates if not properly addressed

* Various design and analysis choices (restriction, matching, propensity score
adjustment) offer strategies to reduce the effect of confounding by
balancing confounder prevalence in target and comparator cohort

* Potential post-adjustment analytic diagnostic: are all observed baseline
characteristics sufficiently similar between target and comparator cohorts?
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Balance diagnostics for comparing the distributio
covariates between treatment groups in propen
matched samples
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Standardized differences are increasingly
between treated and untreated subjects in
their use is lack of consensus as to what
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no clear consensus on this issue, some rese:
0.1 (10 per cent) denotes meaningful imbal
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covariate in question. Ho et al. suggest th:
important covariates than for weak predictc

Covariate balance:

Standardized mean difference
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Second Edition

Jacob Cohen
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The terms “small,”” “medium,” and “large™ are relative, not only to
each other, but to the area of behavioral science or even more particularly
to the specific content and research method being employed in any given
investigation (see Sections 1.4 and 11.1). In the face of this relativity, there is
a certain risk inherent in offering conventional operational definitions for
these terms for use in power analysis in as diverse a field of inquiry as be-
havioral science. This risk is nevertheless accepted in the belief that more
is to be gained than lost by supplying a common conventional frame of
reference which is recommended for use only when no better basis for esti-
mating the ES index is available.

SMALL EFFECT S1ZE: d=.2. In new areas of research inquiry, effect
sizes are likely to be small (when they are not zero!). This is because the
phenomena under study are typically not under good experimental or
measurement control or both. When phenomena are studied which cannot
be brought into the laboratory, the influence of uncontrollable extraneous
variables (**noise™) makes the size of the effect small relative to these (makes
the “signal” difficult to detect).
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myocardial infarction in the elderly: A matched analysis using
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2.4.2. Quantifying bias

We assessed the degree of imbalance within the matched
pairs as well as between the matched and unmatched pa-
tients using the standardized difference, d,, in covariate
means [21]. For each covanate, we calculated

d‘ = lm x ("’gl o xnu)/\ {(Szn + Slncl)/z}

where x_, and x_, are the sample means in the catheterized
and noncatheterized groups of the ith covanate, respec-
tively, and 5%, and s°_, are the corresponding sample vari-
ances. Small (<<10%) absolute values of d, support the as-
sumption of balance [25] between treatment groups.



Covariate balance:
Standardized mean difference
Examples from LEGEND-HTN

Good:

T = amlodipine >45,000 baseline covariates evaluated, many with SMD > 0.1
C = atenolol before matching, but after matching all covariates have

A = PS matching, on-treatment SMD <= 0.03
DB = CCAE

Number of covariates: 45,084 .
0.3- After matching max(absolute): 0.03 =

g’ 0.2-
£
S
©
5
]
=

0.1

e
» ol - "L . . .
° .. ° %o ‘~. . LN o . . e L]
0.0 — e r a
’ 0.0 01 02 03
Before matching
I  Figure 3. Covariate balance before and after matching. Each dot represents the standardized difference of means for a single covariate before and after matching on the [

propensity score. Move the mouse arrow over a dot for more details.




Covariate balance:
Standardized mean difference
Examples from LEGEND-HTN

Bad:
T = candesartan >50,000 baseline covariates evaluated, many with SMD > 0.1

before stratification. After stratification, many covariates
have higher SMD than pre-stratification, many covariates
with SMD > 0.1

C = atenolol
A = PS stratification, on-treatment
DB = CCAE

Number of covariates: 50,427 | oo
After stratification max(absolute): 0.20 e

0.3-

o
n
'

After stratification

0.0 o1 0.2 03
Before stratification

I Figure 3. Covariate balance before and after stratification. Each dot represents the standardized difference of means for a single covariate before and after stratification on the
propensity score. Move the mouse arrow over a dot for more details.



Generalizability:
Standardized mean difference

K

* Generalizability is the extent to which a study result can be applied to a
target population of interest

* The same design and analytic strategies employed to reduce
confounding (such as restriction, matching, propensity score
adjustment) can potentially shift the composition of the analytic cohort
away from the original target

* Potential post-adjustment analytic diagnostic: are all observed
baseline characteristics sufficiently similar between the pre-adjustment
target and post-adjustment analytic cohorts?




Generalizability:
Standardized mean difference
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Generalizability:
Standardized mean difference

Assessment

Statistics for assessing generalizability. When assessing generalizability, three
global measures and one covariate-level measure are often used. We begin
here with the covariate-level measure—the ASMD defined for each covari-
ate X; (j =1, ..., p)as:

XJS — Wp

d| =
4= 25

3 (1)

where X5 is the mean in the sample, W,p 1s the population mean, and G;p is
the population standard deviation. This is calculated for each of the p
covariates included in the propensity score. We focus here on the absolute
value since, following the literature, we are rarely interested in direction but
instead in magnitude. When assessing similarity, researchers are often inter-
ested in both covariate by covariate comparisons (each value of |dj|) and
aggregates of these (e.g., |[d| = Zj:lZ|dj|/p).

Each of these four statistics can then be used to determine if the sample is
similar enough to the population (on observables) to warrant generalization
of the experimental findings. For the ASMD and the logit SMD, researchers
have borrowed rules of thumb generated in observational studies, with
similarity achieved when the values are smaller than 0.25 (Rubin, 2001)
or 0.10 (e.g., Normand et al., 2001). For the generalizability index, Tipton



Generalizability:
Standardized mean difference
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Generalizability:
Standardized mean difference
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Residual bias:
Expected Absolute Systematic Error (EASE)

* Design and analysis choices aim to produce unbiased
estimates, but residual systematic error can exist due to model
misspecification inherent to analysis or data

* Bias —expected value of systematic error — can be estimated
using negative control experiments in which estimates can be
compared with known truth

* Potential post-adjustment analytic diagnostic: is the residual

bias observed from negative controls small enough to accept
that calibrated effect estimates can be trusted as unbiased?




Residual bias:

You trust your scale th . | . /But what if you weighed a
estimate an accurate = ' ’EELI'I P, standard 100Ib weight
weight. If it’s off by a o ' and your scale read
couple pounds, you may 126.47
think it’s ‘good enough’
since its probably
directionally correct and
you can adjust the weight weight by 26 |bs or would
by how much you think you dismiss the scale’s

we scale is miscalibratey . \'/ estimate altogether?

Would you ‘calibrate’ by
adjusting your own




Residual bias:
Expected Absolute Systematic Error (EASE)
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Empirical confidence interval calibration for
population-level effect estimation studies in
observational healthcare data
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Observational healthcare data, such as electronic health records
and administrative daims, offer potential to estimate effects
of medical products at scale. Observational studies have often
been found to be nonreproducible, however, generating conflict-
ing results even when using the same database to answer the
same question. One source of discrepancies is error, both ran-
dom caused by sampling variability and systematic (for example,
because of confounding, selection bias, and measurement error).
Only random error is typically quantified but converges to zero
as databases become larger, whereas systematic error persists
independent from sample size and therefore, increases in rela-
tive importance. Negative controls are exposure—outcome pairs,
where one believes no causal effect exists; they can be used to
detect multiple sources of systematic error, but interpreting their
results is not always straightforward. Previously, we have shown
that an empirical null distribution can be derived from a sample
of negative controls and used to calibrate P values, accounting for
both random and systematic error. Here, we extend this work to
calibration of confidence intervals (Cls). Cls require positive con-
trols, which we synthesize by modifying negative controls. We
show that our (I calibration restores nominal characteristics, such
as 95% coverage of the true effect size by the 95% C1. We further-
more show that Cl calibration reduces disagreement in replica-
tions of two pairs of conflicting observational studies: one related
to dabigatran, warfarin, and gastrointestinal bleeding and one
related to selective serotonin reuptake inhibitors and upper gas-
trointestinal bleeding. We recommend Cl calibration to improve
reproducibility of observational studies.

age treatment cffect. Systematic error can manifest from multi-
ple sources, including confounding. selection bias, and measure-
ment error. While there is widespread awareness of the potential
for systematic error in observational studies and a large body of
rescarch that examines how to diagnose and statistically adjust
for specific sources of bias, there has been comparatively little
work in devising approaches to empirically estimate the magni-
tude of systematic error or clinical applications that show how to
integrate this error into effect estimation methods.

The acuity of this problem is only exacerbated as the size of
observational databases grow: random error (the only compo-
nent that is typically quantified) converges to zero as sample
size increascs, but systematic error persists independent from
sample size. Some sources of systematic error may potentially
increase if expanding the size of a data source comes with com-
promise in the depth or quality of the data captured. Therefore,
the hype of “big data™ has brought with it an increased number of
studics with vanishingly narrow Cls, while our collective uncer-
tainty about the accuracy of any given observational estimate
has steadily increased. While we expect an accurate 95% Cl to
have a 95% coverage probability—the proportion of time that an
interval contains the true value of interest—we have little empir-
ical evidence to support that observational estimates exhibit this
basic, nominal operating characteristic.

A promising development toward better explication of system-
atic error has been recent proposals and examples to apply neg-
ative controls as a diagnostic tool or “falsification hypothesis”
(2—4). Negative controls are exposure—outcome pairs where one
helieves no cansal effect exists Execntine a studv on neoative con-
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Cl Calibration. For Cl calibration, we build on our previous work in cal-
ibrating P values (10). Using the computed effect size estimates for the
negative and positive controls, we observe to what extent random error
alone explains the difference between the estimates and their true effect
sizes. Systematic error explains any additional difference. We fit a system-
atic error model using the effect size estimates for the controls and sub-
sequently use this model to compute calibrated Cls for the effect sizes of
interest. The model assumes that systematic error follows a Gaussian prob-
ability distribution around the true effect size. We have found that a Gaus-
sian distribution provides a good approximation, and more complex mod-
els, such as mixtures of Gaussians and nonparametric density estimation,
do not improve results. Let §; denote the computed log effect estimate
(e.g., hazard ratio) from the ith negative or positive control, and let 7
denote its corresponding estimated SE for i = 1,...,n. Let 6; denote the
true log effect size, and let 3; denote the asymptotic bias associated with
pair i: specifically, the difference between the log of the true effect size
and the log of the estimate that the study would have returned for con-
trol i had it been infinitely large. As in the standard Cl computation, we
assume that 6; is normally distributed with mean 6; + 3; and variance #7.
Note that the traditional Cl calculation always assumes 3; = 0 but that we
assume that 3; for all i arises from a normal distribution with mean (6;) and
SD o(6;) that follow linear models, after appropriate transformation, with
unknown intercepts a and ¢ and slopes b and d, respectively. Specifically,
we model

Bi ~ N(u(6;), 02(0,')) and

: . (1)
0,’ ~ N(gl + ,Bil Ti )l

Expected absolute systematic error
(EASE) = |Bi]

Results



Residual bias:

Good:
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Residual bias: Se_
v Expected Absolute Systematic Error (EASE)
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Residual bias:
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Engineering open science systems that build trust into the
real-world evidence generation and dissemination process

'SVStng'qL‘?ﬁe“;rsgeer:igzgf: Distributed data network, standardized to common data model
Analysis specifications - - - - - - - - - - - -
Decision threshold S
SEBONEIESIONS Network coordination

Data quality evaluation

Database Pass

Fail Phenotype development and evaluation

Cohort Cohort Pass
definitions diagnostics

Analysis reliability evaluation

Analysis
design
choices

Study
diagnostics

System characteristics:

e Standardized procedures with defined inputs and outputs

* Analysis packages implementing scientific best practices
consistently applied across all data partners, generating consistent

output for network synthesis un;:‘na;ed
e Reproducible outputs generated by open-source analysis libraries results
developed and validated with verifiable unit-test coverage
* Pre-specified and objective decision thresholds for go/no go criteria e

exploration

e Measurable oeeratinﬁ characteristics of sxstem Eerformance



Concluding thoughts

* Diagnostics can provide evidence to build trust in the results of
our studies, but...
— Post-hoc interpretation allows for investigator bias

— Current decision thresholds are based on asserted expert opinions
and arbitrary rules of thumb

* How can we develop empirical evidence to set objective
decision thresholds and allow pre-specification of diagnostics
to increase trust and improve the reliability of our studies?




An empirical evaluation of
study diaghostics
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LEGEND viewer

Pl LEGEND Basic Viewer

About Specific research questions
Indication Show| 15 v entries
Hypertension v Analysis Data source HR LB uB P Cal.HR Cal.LB Cal.u cal.P
£ PS stratification, on-treatment CCAE 3.96 3.09 517 0.00 3.80 2.65 6.01 0.00
Xposure group
PS stratification, on-treatment CuMC 1.60 0.54 6.88 0.47 1.61 0.51 5.66 0.40
D jor cl -
ilg major ciass PS stratification, on-treatment MDCD 9.77 3.09 5927 000 876 210 NA 0.00
I PS stratification, on-treatment MDCR 3.03 1.83 5.35 0.00 3.26 1.81 6.63 0.00
(J Include combination exposures
PS stratification, on-treatment NHIS_NSC 0.15 NA 2.62 NA NA NA NA NA
Target
g PS stratification, on-treatment Optum 3.18 2.45 4.20 0.00 3.14 2.21 4.79 0.00
ACE inhibitors v PS stratification, on-treatment Panther 3.78 237 645 000 280 1.66 7.45 0.00
PS matching, on-treatment CCAE 4.36 2.94 6.70 0.00 4.44 2.71 7.68 0.00
Comparator
PS matching, on-treatment CcumMC 3.00 0.38 60.62 0.39 2.98 0.22 NA 0.41
Angiotensin receptor blockers (ARBs v
9 P ( ) PS matching, on-treatment MDCD 14.00 2.81 NA 0.02 15.88 1.58 NA 0.02
Outcome PS matching, on-treatment MDCR 7.93 2.76 33.48 0.00 9.59 242 NA 0.00
. PS matching, on-treatment NHIS_NSC NA NA NA NA NA NA NA NA
Angioedema v
PS matching, on-treatment Optum 3.48 2.23 5.65 0.00 3.55 212 6.23 0.00
Data source PS matching, on-treatment Panther 2.64 1.36 5.51 0.01 2.07 1.14 4.56 0.01
s Showing 1 to 14 of 14 entries Previous ’ 1 ‘ Next
CUMC ]
IMSG Power Attrition Population characteristics Propensity scores Covariate balance Systematic error Kaplan-Meier
JMDC Table 1a. Number of subjects, follow-up time (in years), number of outcome events, and event incidence rate (IR) per 1,000 patient years (PY) in the target (ACE inhibitors) and
MDCD comparator (Angiotensin receptor blockers (ARBs)) group after stratification, as well as the minimum detectable relative risk (MDRR). Note that the IR does not account for any
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LEGEND estimates

1.25

1.00

0.75

0.50

Standard Error

0.25

0.00

_—

0.1 0.25

1
Hazard ratio

68



7

/Showing all 471,321 calibrated
estimates from LEGEND
Hypertension (restricting to mono-
therapy comparisons only, using
on-treatment time-at-risk)

-
It is good that we see no evidence

of publication bias or p-hacking, but
is this otherwise good or bad?
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/ LEGEND estimates where no effect is expected

* Hypertension medications are well studied

* Product labels tend to be inclusive for adverse reactions: High
sensitivity

* Conservative approach:
— For the list of outcomes in LEGEND

— When comparing two drugs
— If neither target nor comparator drug has the outcome on the label
— And no other drug in the same classes have the outcome on the label

— Then both drugs likely don’t cause the outcome, and the hazard ratio
is likely to be 1.
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* ACE inhibitors like lisinopril have angioedema
on their label.

e Calcium channel blockers and ARBs are not
believed to have this side effect, but still list
in ‘Postmarketing experience’.

* None of the direct vasodilators and alpha-1
blockers have angioedema on their label.

Hydralazine (vasodilator) vs prazosin (alpha
blocker) for angioedema is likely null

LEGEND estimates where no effect is expected

NH,
: o.f’:
Q/\i ,‘|:>
N
H %
0] 0
HO

Lisinopri!

2 WARNINGS AND PRECAUTIONS

5.1 Fetal Toxicity
Lisinopril can cause fetal harm when administered to a
renin-angiotensin system during the second and third t
function and increases fetal and neonatal morbidity an
associated with fetal lung hypoplasia and skeletal defo
include skull hypoplasia, anuria, hypotension, renal fail
discontinue lisinopril as soon as possible [see Use in s,

5.2 Angioedema and Anaphylactoid Reactions
Patients taking concomitant mTOR inhibitor (e.g. temsi
neprilysin inhibitor may be at increased risk for angioe
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* ARBs like losartan have rhabdomyolysis listed
as an adverse event

e Beta-blockers and loop diuretics do not

metoprolol (beta-blocker) vs furosemide (loop
diuretic) for rhabdomyolysis is likely null

F,/ LEGEND estimates where no effect is expected

6.2 Postmarketing Experience
The following additional adverse reactions have been repo

losartan potassium. Because these reactions are reported v,
size, it is not always possible to estimate their frequency re
drug exposure:

Digestive: Hepatitis.
General Disorders and Administration Site Conditions: Mal
Hematologic: Thrombocytopenia.

Hypersensitivity: Angioedema, including swelling of the lar
and/or swelling of the face, lips, pharynx, and/or tongue ha
with losartan; some of these patients previously experienc
ACE inhibitors. Vasculitis, including Henoch-Schonlein purp
reactions have been reported.

Metabolic and Nutrition: Hyponatremia.

Musculoskeletal: Rhabdomyolysis.
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/ LEGEND estimates where no effect is expected

e 9,752 target-comparator-outcomes are likely null (2 x 4,876)

* A new set of (imperfect) negative controls (null may not be
true)

* Difference with negative controls used in LEGEND:
— Will use these across all analyses to evaluate overall distribution

— Outcomes more similar to the outcomes of interest: better
exchangeability?
— Using full outcome phenotypes instead of ‘occurrence of concept’
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’/{‘ LEGEND estimates when null is likely true

Showing all 11,716 calibrated
estimates from LEGEND Hypertension
where believe the null to be true

Standard Error

1.0

0.5

0.0

| ]
(11,716 estimates] Ve, ¢ "

Emplrlcal Illill.r mean = -0. 00 SD = 0.48, EASE = 0.38]
15.2% have Cl excludlng 1 ‘ Te
7.6% have LB > 1

| 7.5% have UB < 1

0.1 0.25 0.5 1 2 4 8 10

Hazard ratio
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LEGEND estimates when null is likely true

15 | |
11,716 estlmates :
'Emplrlcal null: mean = -0. oo SD = 0.48, EASE = 0.38|

/<

( : =1 B s ol

15.2% have CI excludlng 1 ‘
7.6% have LB > 1 ):‘ BEE e S8 " /
| 7.5% have UB < 1 « 3 YD "
N NI %

If the null is true for all, we would
expect 5% of Cls to not include 1

Standard Error

-

Estimates below the dashed line
have confidence interval (Cl)
excluding 1

0.0

0.1 0.25 0.5 1 2 4 8 10
Hazard ratio
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/¢ LEGEND estimates when null is likely true

15 | L
/A : 6 look at 11,716 estimates | ;

MOre accurate way to fook at Empirical null: mean =-0.00, SD = 0.48, EASE = 0.38]
deviation from the null s th.e flt.tEd [15.:2% have CI excluding 1 gl )
parameters of the null distribution. \|7.6% have LB > 1 i o8 *. M T A
We can summarize these as EASE. 1.0 117.5% have UB < 1 » 3 / 4

N\ B G E oD p %y

[
Fitted null distribution also visualized

as orange areas, where (newly)
calibrated Cl doesn’t include 1

tandard Error

-

EASE = 0.0 means it seems the null is
true for all, and there is only random
error (as expressed in the Cls), no

systematic error.

8 10
Hazard ratio
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Evaluating the effect of
diagnostics rules

-

OHDS

OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS




Statistical power

Rule: Minimum Detectable Relative Risk (MDRR) < 10

Reasoning:

Even low-power estimate (wide Cl) could be helpful, but we want
to avoid misinterpreting grossly underpowered studies

Note:

In LEGEND Hypertension, we required exposure cohorts > 2,500
subjects, so already eliminated most underpowered estimates.
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Count

100,000

50,000

Statistical power

5% failing |

14 12 10 8 6 4
Minimum Detectable Relative Risk (MDRR)

PASS FAIL

2
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Statistical power

5% failing |

1
|
|
|
100,000 )
- |
c |
- |
8 [
50,000 !
| Patrick’s example
! of a good study
0 |
1 1 I ' . ! !
14 12 10 8 6 - 2
Minimum Detectable Relative Risk (MDRR)
1.26

PASS FAIL
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Statistical power

5% failing |

1
I
I
I
100,000 .
— I
- |
- I
Q I
O 50,000 |
: Patrick’s example
: of a bad study
I
0
|

14 12 10 8
Minimum Detectable Relative Risk (MDiR

PASS FAIL

81



Statistical power

5% failing |

100,000

Count

50,000

14 12

LN
o

I

-

Most comparative effects in antihypertensives have HR < 2.
We’re not ensuring we are powered to answer real questions. (we are)
We're trying to avoid reporting hard-to-interpret estimates. (e.g. HR = 5.1 (0.7-36.2) )




1.25

1.00

0.75

0.50

Standard Error

0.25

0.00

100,000 -

-
C
2
o

O

50,000 -

0-

0.1

Statistical power

Having MDRR < 10

Minimum Detectable Relative Risk (MDRR)

" " i i N ' ! y ' .';:‘V-‘-: s i ‘
M 471,321 estima | 7| M 447,445 estimates i { 7]
N = Pl 2 e €
p 7B e i
\ '_, > N ‘
1 {
| |
i
! P
0.25 0.5 1 2 4 8 10 0.1 0.25 0.5 1 2 4 8 10
Hazard ratio
: )
1 1
1 1
i :
1 1
1 1 I 1 1 1 1 1 ] l 1 1 1 1
14 12 10 8 6 4 2 14 12 10 8 6 4 2
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Statistical power

All Having MDRR < 10
| ; , |
11 ,/16 estimates o kg [11 233 estlmates
Emplrlcal nuII ‘mean =-0.00, SD = 0 48 EASE = 0. 38] Empirical null: ,mean =-0.00, SD 0.48, EASE =0. 38]
\ 15.2% have CI excludlng 11, %58 glo e / 15 7% have Cl excluding 1| 3 )

7.6% have LB > 1 OO R ool ™ L 79%haveLB>1 s Iy
50 |75%haveuB<1  f ¢ ; : ' 78%haveUB<1 [~
o A P _ o A :
S
n

Already guaranteed reasonable power in
LEGEND because of cohort > 2,500 rule

0.1 0.25 U 1 Z 4 8 10 0.1 0.25 0.5 1 2 4 8 10
Hazard ratio




Equipoise

Rule: Equipoise > 0.5

(Equipoise is percent of population that has 0.3 < preference
score < 0.7)

Reasoning:

If equipoise is low, the populations are too incomparable, and we
probably shouldn’t trust our ability to make them comparable.
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Equipoise

30,000~ 71% failing

20,000

Count

10,000

0.00 0.25 0.50 0.75 1.00
Equipoise

PASS FAIL

86



Equipoise

30,000~ 71% failing

20,000

Count

10,000

B vaisartan [l] Oimesartan

90.8% is in equipoise:

I . |
0,50 : 1.00

quipoise

-

Patrick’s example

PASS FAIL of a good study

0.00 025 0.50 075 1.00
Preference score

Figure 2. Preference score distribution. The preference score is a transformation of the propensity score that adjusts for differences in the sizes of the two treatment groups. A
higher overlap indicates subjects in the two groups were more similar in terms of their predicted probability of receiving one treatment over the other.
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Figure 2. Preference score distribution. The preference score is a transformation of the propensity score that adjusts for differences in the sizes of the two treatment groups. A
higher overlap indicates subjects in the two groups were more similar in terms of their predicted probability of receiving one treatment over the other.

Equipoise

30,000~ 71% failing

20,000

Count

10,000

0

Il vaisartan [li] Chiorthalidone

I 1 1
0.25 0.50 0.75 1.00

Equipoise

27.9% is in equipoise

Patrick’s example
PASS FAIL

of a bad study

025 050 075 1.00

Preference score

0.00
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Equipoise

Within class Between class

[24% failing | 76% failing |

20,000
2,000
I= I=
-} -}
S S
1,000 10,000
0 | 0 |
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Equipoise Equipoise
PASS FAIL PASS FAIL
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Equipoise

Having equipoise > 0.5

15 l | b fualiuty i C | |
A L R e T P (136,405 estimates| . o
..—.:ﬁ\n” 4 v
\ _

_1.0

o

w

o

©

©

[ o=

g

®05

0.0
0.1 0.25 05 1 s 4 810 0.1
Hazard ratio
30,000 :

T 20,000
-]
(@]
O 10,000
0 1 1

0.00 0.25 0.50 0.75 1.00  0.00 0.25
Equipoise

0.50
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i//. Equipoise
All Having equipoise > 0.5
1.5 , J s ’ |
11,716 es'timate's_;ﬂig : I 3 NP l [2,792 est[mates] L
| Empirical null: mean = -0.00, SD = 0.48, EASE = 0.38] | Empirical null: mean = -0.00, SD = 0.02, EASE = 0.02]
\ 15.2% have CI excludig e ;' '-,\. ols. Te 4.7% have‘CI excluding 1
- 7.6% have LB > 1 o : " o 2.5% have LB > 1

2.2% have UB < 1

Standard Error

O
ol

0.0

2l Maybe a less strict rule can
keep more estimates?




Equipoise relaxing to > 0.1

Having equipoise > 0.1

1.25 e 9%&?5« P e i T —
M413,489 estimatesE’f?«-""f 0 e SR 17
N ‘ : REn orw] e Oy J {
1.00 = ik Rl
,'. /

B 4ty
0.75 AP
L : ‘?:{3:
o 1y
E *
€0.50 _
o .

0.25

0.00

0.1 025 05 1 2 4 810 0.1 025 05 1 2 4 8 10

Hazard ratio

1.00  0.00 0.25 0.50 0.75 1.00
Equipoise




X

Standard Error

0.5

0.0

All

j
11,716 estimates

Equipoise relaxing to > 0.1

’

P—— T

15.2% have Cl excluding 1

7.6% have LB > 1

75% have UB<1

-

0.1

> “?

|

Empirical null: vmean‘— -0. 00 SD = 0 48 EASE = 0. 38]

Having equipoise > 0.1

110,010 esltlmatesJL O | g
EmplrlcallerEILHmeEn 0.00,SD =0.41, EASE =0.33
13.5% have Cl excluding 1 | ,
6.9% have LB > 1 g -

. /6

6.6% have UB < 1

-

*"e Fuhat)
0‘! \’ - 3
" 9

Setting equipoise threshold at 0.1 shows some improvement in
systematic error, but not as dramatic at 0.5.

8 10
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Covariate balance

Rule: Max standardized difference of mean (SDM) < 0.1
(no covariate may have a SDM >= 0.1 after PS adjustment)

Reasoning:
If covariates are unbalanced there may be confounding.
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Covariate balance

56% failing | '

75,000

50,000

Count

25,000

1.00 0.75 0.50 0.25 0.00
Standardized Difference of Mean (SDM)

PASS FAIL

i
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Covariate balance

56% failing | |

75,000
€ 50,000
O
O

25,000

0.50 - 0.00
ed Differefice of Mean (SDM)
. Patrick’s example
PASS FAIL of a good study
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75,000

50,000

Count

25,000

Covariate balance

56% failing |

PASS

FAIL

Patrick’s example
of a bad study
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Covariate balance

Propensity score matching Propensity score stratification
50 006 [24% failing | ! 10 000 [80% failing | !
‘© 40,000 + 20,000
-} -}
O O
o o
20,000 10,000
0 1 1 1 1 ! 1 0 1 1 1 1 ! 1
1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00
Standardized Difference of Mean (SDM) Standardized Difference of Mean (SDM)
PASS FAIL PASS FAIL
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Covariate balance

1 5% All Havmg max SDM < 0.1
: Lo, Lr AL TR P S R N b i ?:.,., | ‘
— BT F i b ‘
\ 471 321 estlmates ‘-".*;,,; " ,&"" Xord 57
'\ . 5 ""!F"r "‘Y~ y 4 f
1.00 N S i
S 0.75 |
11] |
© {
g |
§ 0.50 ‘
(V)]
0.25 |
0.00
0.1 0:25 0.5 1 2 4 8 10 0.1 0.25 05 1 2 4 8 10
Hazard ratio
1 ]
75,000 -
c
> 50,000 -
o
O 25.000-
O- 1 1 1 1 1 1 1 ] 1 1
1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00

Standardized Difference of Mean (SDM)
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Standard Error
o

o
n

0.0

0.1

11,716 estimates

L,

All

. |

Covariate balance

Having max SDM < 0.1

|
4923 estlmates]

Empirical null: mean = -0. 00 SD 0 48 EASE = 0. 38]
15.2% have Cl excluding 1|

7.6% have LB > 1

R 5% have UB <

1

0.25

4

Emplrlcal nuII mean = —0.00, SD =0.35, EASE = 0.28]

8 10 0.1
Hazard ratio

11.0% have CI excludlng 1
5.5% have LB > 1 - ‘
5.5% have UB < 1 4 ‘

0.25 0.5 1 2 4 8 10
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Generalizability

Rule: Max SDM between analytic cohort and target cohort <
0.25

(target cohort: the cohort we started with (those exposed))

(analytic cohort: the cohort after all adjustments)

Reasoning:

Estimate may not generalize to our target population if
differences are too great.
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Generalizability

60.000 - 57% failing |

40,000

Count

20,000

1 1 1 I 1
1.00 0.75 0.50 0.25 0.00

Generalizability Standardized Difference of Mean (SDM)

PASS FAIL
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SDM analytical vs. target

Generalizability

60.000 - 57% failing |

40,000

Count

1.00-

(Max abs. SDM = 0.04 |

050~
P R

0.00 —uim————— -

025=====m=mm-m---m——==-

0.75 0.50 -

seneralizability Standardi

-0.50-

-1.00-

0.00 0.25 0.50 0.75 1.00
Proportion in target population

PASS FAIL

=d Difference 6f Mean (S

Patrick’s example
of a good study
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Generalizability

60.000 - | 57% failing |

40,000

Count

2N NNN

1.00 -

(Max abs. SDM = 0.40 |

0.00
tandardized Difference of Mean (SDM)

SDM analytical vs. target

Patrick’s example

-1.00-

000 025 050 075  1.00
Proportion in target population

PASS FAIL of a bad study
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Count

Generalizability

Propensity score matching Propensity score stratification

10.000=1669% failing | ; [49% failing | :
1
7,500 40,000 .
£ :
5,000 3 !
© 20,000 '

2,500
° | ° |

1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00
Generalizability Standardized Difference of Mean (SDM) Generalizability Standardized Difference of Mean (SDM)
PASS FAIL PASS FAIL
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Generalizability

Havmg generallzablllty max SDM < 0. 25

' ~ [203 986 estlmates] * e ,3‘2 Siastpuviiy oy
3 il e A o : p
1.00 A s
N\ s : /
P R
i }
©
©
£0.50 _
5 >
0.25
0.00
0.1 0.25 0.5 1 2 4 8 10 0.1 0.25 0.5 1 2 4 8 10
Hazard ratio
1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00

Generalizability Standardized Difference of Mean (SDM)
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Generalizability

All Having generalizability max SDM < 0.25
1.5 | ]‘ ; : , | .
[11 716 estimates , | - l 14,942 esti'matesJ' B .
I Empirical nuII mean = -0.00, SD 0 48 EASE = 0. 38] iEmpiricaIAn_uII: mean = 0.03, SD = 0.47, EASE = 0.37
1 15.2% have CI excludlng 11, %588 ® o ) 13.9% have Cl excluding 1 r
. o e ¥ ‘.‘ Y
Generalizability rule has no effect y SN
. . N o A 6.0% have UB < 1
on residual systematic error. But we 3|, D% e

didn’t really expect any. oy

0.5

0.0

0.1 0.25 0.5 1 2 4 8 10 0.1

. . 1 8 10
Hazard ratio
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Strong interaction effect between
Covariate balance and generalizability

All Meeting both balance and generalizability rules
1.5 - ' |
| 11,716 es}imates » \ ' | | [2,307 estimates]
| EmpiricaLrwItJll;mefn = —0.0_0, SD =0.48, EASE = 0.38] kEmpiricaIAnuII: mean =-0.01, SD =0.08, EASE = 0.07]
(15 29% have Cl excluding 1! | | 1] '5.2% have Cl excluding 1

r / N
Strong interaction: balance and |

generalizability rules by themselves have

little effect, but combined they have a large

effect on residual systematic error.

2.3% have LB > 1 /
12.9% have UB < 1
|

(2]

0.1 0.25 0.5 1 2 4 8 10 0.1 0.25 0.5 1 2 4 8 10
Hazard ratio
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/ Systematic error

Rule: Expected Absolute Systematic Error (EASE) < 0.25

(EASE is the expected abs(log(estimated RR) — log(true RR)), based on
negative control estimates)

Reasoning:

Even though we can and should empirically calibrate to account for residual
error, readers may not trust results if calibration shifts the estimates too
much.

Note:

Our evaluation uses calibrated estimates, which already incorporates the
systematic error observed for the original set of negative controls.
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Systematic error

[ 16% failing |

75,000

50,000

Count

25,000

1 1 I 1
1.00 0.75 0.50 0.25 0.00

Expected Absolute Systematic Error (EASE)

PASS FAIL
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Systematic error

[16% failing |

75,000

True hazard ratio = 1

1.00 \ [ | 4
|62 estimates]| {

\ aal o /

196.8% of Cls include 1) i
\

[ §

050 [EASE=0.(\)1] . |s
]

0.75

/
/

\ ..‘. ® /
0.25 . e
§ v
5 0.00 ,!_
S100 | | y
3 | 68 estimates {
n T / 1 1
0.75 0.75 0.00

\ [ . )
195.6% of Cls include 1 R
T T

050 [EASE=001)." . Expected Absolute

el Patrick’s example
0.25 N y
N £ 3 PASS EAIL of a good study
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Systematic error

[ 16% failing |

75.000

True hazard ratio =1

1.00 L W . o "he el
|66 eftlmates]. Savpe T
0.75 A-._nnpd b
197.0% of Cls include 1]
N
050 [EASE=0.09) L
\
N /
0.25 \ /
S v |/
5 0.00 Y
g 1.00 \ o
s |66 estimates|  , , |
]

e
~
o

0.75 0.50 0.25 0.00
Expected Absolute Systematic Error (EASE)

Patrick’s example

PASS FAIL of a bad study
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Systematic error

Havmg EASE <0.25

1.25

"\-«
»
¥

1.00 R
0.75

0.50

Standard Error

0.25

0.00

0.1 0.25 0.5 1 2 4 8 10

1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00

Expected Absolute Systematic Error (EASE)
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4
/<

All

1.5 |
[11 716 estimates

Systematic error

Having EASE < 0.25

, |
19,718 estimates]

[Emplrlcal null: mean = -0.00, SD = 0. 48 EASE = 0.38]

 Empirical nuII mean = 0. 00

= 0.44, EASE = 0.35

W 19:2% have Cl excludlng 1
7 6% have LB > 1 ot
7.5% have UB < 1 .

VTR e .:«1 _k

%

o
B

V4
> o /
..

R
A

\ 14.3% have cl excludlng 1|

(7.0% have UB < 1

7.3% have LB > 1

% Error
-—

Citamela

systematic error. This suggests the

when EASE was big.

0.
0.1 0.25 0.5 1 2

Filtering by EASE has little effect on residual

empirical calibration was doing a good job

4

8 10 0.1
Hazard ratio

8 10
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Combining all diagnostics

(88% failing |

150,000

Majority of estimates fail 2 or
more diagnostics. Need to
understand how they interact.

100,000

-
-
O

50,000

Diagnostic | Threshold [N A R

Statistical power (MDRR) 10 Number of failed diagnostics
Equipoise 0.50 PASS FAIL
Covariate balance (SDM) 0.10

Generalizability (SDM) 0.25

0.25 BT

Systematic error (EASE)
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1.25

1.00

0.75

0.50

Standard Error

0.25

0.00

M 471,321
N

-

0.1

*

150,000

100,000

Count

50,000

0

estimates | *

Combining all diagnostics

Meeting all diagnostics rules

;.-'nn‘ |
7 N 54,358 estimates)
./ N\
s TP \
>igie \
\
: N
\
\
4 8 10 0.1 0.25

Hazard ratio

Number of failed diagnostics
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All

i
11,716 estimates| >

Combining all diagnostics

Meeting all diagnostics rules

1,633 estilmatesl

Empirical null: mean = -0.

15.2% have Cl excluding 1]
7.6% have LB > 1 :

—_
o

Standard Error

9
u

This shows the importance of
considering diagnostics (like we
did when we wrote the LEGEND
Hypertension papers)

00, SD = 0.48, EASE = 0.38) |

Empirical null: mean = -0.00, SD = 0.00, EASE = 0.00]

8 10 0.1
Hazard ratio

3.9% have Cl excluding 1
2.3% have LB > 1
1.7% have UB < 1

0.25 0.5 1 2 4 8 10
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Can we do better?

* Current thresholds are arbitrary
 Can we do any better?
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Rules as an optimization problem

 We have an ‘objective’ optimization criterion:
— Maximize remaining estimates

— Under constraint of low residual bias as measured on new negative
controls (EASE< 0.05)

 What set of thresholds is optimal?
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‘Optimal’ thresholds

Diagnostic Literature-derived | Data-driven
threshold threshold

Statistical power (MDRR) 10

Equipoise 0.50 0.50
Covariate balance (SDM) 0.10 0.50
Generalizability (SDM) 0.25 -
Systematic error (EASE) 0.25 -
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Using data-driven rule set

300,000-1719% fajling |

200,000

Count

100,000

1 1 ! 1
2 1 0

Number of failed diagnostics

PASS FAIL

-
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Using data-driven rule set

AII Meeting all new diagnostics rules
1.25 2o ¥R w 'm EL AT R R ae? Bl o T
N 471 321 estlmates i Jeyess o S e e R 4 \[136,405 estimates] ‘ £
‘ﬁ ~ 4' N . . "
1.00 \ . \
" \
2 \ o ’“ e
S 0.75 { \
w Do 1
o \
o ot
€0.50
n
0.25
0.00
0.1 0.25 0.5 1 2 4 8 10 0.1 0.25
Hazard ratio
300,000 ! :
1
'€ 200,000 I
- 1
o
O 100,000
0- 1 1 1 1 1
2 1 0 2 1 0

Number of failed diagnostics
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Using data-driven rule set

N

All Meeting all new diagnostics rules
1.5 | 5 ‘ : ' |
11,716 estimates : I . § l |2,792 esti'mates|ul'
Empirical null: mean = -0. 00 SD 0 48 EASE =0. 38] | Empirical null: mean = -0.00, SD = 0.02, EASE = 0.02J
\ 15.2% have ClI excludlng 1Me 5.8 ;! = o p 4.7% have CIl excluding 1
7.6% have LB > 1 . W ' 2.5% have LB > 1 s

—_
o

75% have UB<1

2.2% have UB < 1

andard Error

The new diagnostics achieve very low
residual systematic error (by design)

0.1 0.25 0.5 1 2 4 8 10 0.1 0:25 0.5 1 2 4 8 10
Hazard ratio
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Deriving multi-objective decision thresholds
empirically

* Diagnostics may reflect different objectives:
— improving interpretability (MDRR)
— Reducing systematic error (equipoise, covariate balance, EASE)
— Ensuring generalizability

* Optimization allows for specifying constraints across all
objectives as desired.

 Example: if you want to ensure high generalizability, set max
SDM < 0.25
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/ ‘Optimal’ thresholds when requiring generalizability

Diagnostic Literature-
derived threshold
Statistical power (MDRR) 10
Equipoise 0.50
Covariate balance (SDM) 0.10
Generalizability (SDM) 0.25
Systematic error (EASE) 0.25

Fraction remaining 12%

Data-driven Requiring
threshold generalizability

0.50 0.25
0.50 0.15
- 0.25%*

* Specified constraint
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Wrapping up the evaluation of diagnostics

We've shown some of the diagnostics can help improve the
reliability of the evidence, as measured as systematic error.

Other diagnostics have different goals, such as improved
interpretability and generalizability.

Up to now, diagnhostics rules were arbitrary.

Our empirical evaluation provides evidence for choices of
thresholds, under various constraints.
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Pre-specification of diagnostic rules

* Post-hoc interpretation of diagnostics allows for investigator
nias (p-hacking).

* Diagnostics rules should be pre-specified, for example in the
protocol.
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‘System’ required elements:
Required phenotypes
Analysis specifications
Decision thresholds

Data quality evaluation

Database Pass

Pre-specification of diagnhostic rules

Cohort

definitions

Fail Phenotype development and evaluation

Cohort
diagnostics

Pass

r

We argue you should stop when failing
diagnostics

)

Our evaluation shows many estimates
did not meet all diagnostics. | expect the
same for other studies

Analysis reliability evaluation

Analysis

Study

Pass

design

. diagnostics
choices g

Final
unblinded
results

Interface for
exploration
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Avoiding investigator bias
when interpreting diagnostics

* Diagnostics need to be evaluated prior to looking at the study
results

* Protocol can contain

Research
. . question
diagnostics results, or

* Protocol can contain Write protocol implement study s ——
ifi i i & study pack
prESPEC|f|Ed dlagn05t|CS Protocol: Full Study package: Full A
| | h (human-readable) W (machine-readable)
rules (So long as they are Sescrintion e tation execute study

Nnot m0d|f|ed post_hoc) Full diagnostics

Execute diagnostics

Without looking at the outcome of interest!
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7/{‘ Pre-specification of a systematic approach

Traditional observational study:

Define research Generate Interpret study Interpret study

question evidence reliability results

LEGEND Hypertension:

Define research Generate Interpret study

Interpret study Use study

question evidence reliability results evidence

New recommendation:

Define research Generate Interpret study Interpret study

results

guestion evidence reliability

l Ad-hoc, expert-driven

l Pre-specified
systematic approach
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Source
CCAE
CUMC
MDCD
MDCR
NHIS_NSC
Optum
Panther

Summary (12 = 0.00)

Interpreting results from multiple databases

HR (95% CI)

1.10 (0.99-1.23)
0.72 (0.43-1.26)
1.13 (0.78-1.71)
1.14 (0.98-1.33)
0.81 (0.39-1.61)
1.13 (1.03-1.23)
1.05 (0.91-1.21)

1.10 (1.04-1.16)

Calibrated HR (95% CI)
1.12 (0.93-1.40)
0.80 (0.46-1.48)
1.11 (0.75-1.67)
1.20 (0.96-1.57)
0.84 (0.43-1.66)
1.14 (0.96-1.40)
1.01 (0.79-1.41)

1.11 (0.95-1.32)

Uncalibrated

g
——
——
-
—t—
Lg

H

K>

0.1 025 05 1 2

4 6810 0.1

Hazard ratio

Calibrated

T
t 1

_
]

t

H

3

025 05 1 2 4 6 810

LEGEND Hypertension. ACEs vs ARBs for acute Ml using stratification

https://data.ohdsi.org/LegendBasicViewer/
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Interpreting results from multiple analyses

Uncalibrated Calibrated
Source HR (95% CI) Calibrated HR (95% CI)

Summary (2=0.00)  1.10 (1.04-1.16) 1.11 (0.95-1.32)

01 025 05 1 2 4 6810 01 025 05 1 2 4 6810
Hazard ratio

LEGEND Hypertension. ACEs vs ARBs for acute Ml using stratification

Uncalibrated Calibrated

Source HR (95% CI) Calibrated HR (95% Cl)

Summary (12 = 0.00) 1.20 (1.08-1.32) 1.19 (1.01-1.42) KA O

01 025 05 1 2 4 6810 01 025 05 1 2 4 6 810
Hazard ratio

LEGEND Hypertension. ACEs vs ARBs for acute Ml using matching
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Pre-specification of a systematic approach
'/A P Y PP

Traditional observational study:

Define research Generate Interpret study Interpret study

question evidence reliability results

LEGEND Hypertension:

Interpret study Use study
results evidence

Define research Generate Interpret study

qguestion evidence reliability

New recommendation:

Define research Generate Interpret study Interpret study
guestion evidence reliability results

Future:

l Ad-hoc, expert-driven

Define research Generate Interpret study Interpret study
qguestion evidence reliability results o l Pre-specified

systematic approach
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/3

OHDS

OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS

Discovery in causal inference
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0.1

Effect discovery

ow OF& n

\

\(136,405 estimates|
\

B

2 Y
\

What are these? Are they known?

Meeting all new diagnostics rules

8 10
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' Adjustment for multiple testing - estimation

4 )
What is the effect of
NMeeting all new diagnostics rules . ACEs on AMI
\[136,40525timatesj] & o o bt / compared to ARBs? :{ Using alpha = 0.05 E

# Hazard ratio = 1.19 (95% Cl: 1.01-1.42)

0.1 0.25 0.5 1 2 4 8 10
Hazard ratio
4 , ) 4 o )
1 hypothesis, 1 result, 1 test to Note that in literature you'd need
correct so the doctor has the to adjust for publication bias and

_pm—\

desired alpha p-hacking
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Adjustment for multiple testing - discovery
)

(
What effects achieve

Meeting all new diagnostics rules StatiSticaI l’-L-J“.--“E““.i-“-T -------- \.
= ; | P . g 1 JsIing Tamily-wise !
M136,405 estimates) | | / significance? i Ioha = !
L o f Y, ! alpha =0.05 }
# List of effects
0.1 025 05 1 2 4 8 10
. . N ([ . . )
To answer this question, we have to Interestingly, because we failed
consider all results. To achieve desired diagnostics for many, we have fewer tests
alpha, we must adjust for the total \to adjust for!

W

_knumber of estimates (n = 136,405).
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Discovery in effect surveillance

Assume a surveillance system monitoring

* Multiple treatments
* Multiple outcomes
 Multiple time-at-risks
 Multiple methods
 Multiple databases

* Multiple looks over time l Check out Fan’s talk at 1pm! '
How best to adjust for multiple testing?

What are the overall operating characteristics we’re like to see?
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F < Conclusions

OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS
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Conclusions

* Diagnostics are important to ensure reliability of results

— We've been saying that for a while
— We now have some empirical evidence demonstrating this

 As OHDSI we need to become more rigorous in applying diagnostics
— Make interpretation of diagnostics a systematic process

— Either evaluate diagnostics beforehand, or pre-specify diagnostics rules
beforehand (just don’t look at results that don’t pass diagnostics)

* Many studies will fail diagnostics
— Less ‘evidence’ is better, when we can trust what remains

— Disseminate failures. Argues for LEGEND-like studies, where failures are
part of result set
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2 7

Looking forward

* Many opportunities to propose and improve diagnostics
— Better balance metric? Equipoise? Generalizability?

— Go / no go rules for data diagnostics? Cohort diagnostics?

* Improving interpretation of results
— Synthesizing results from multiple databases and multiple analyses

— Designing a discovery and surveillance system, deciding on what
operating characteristics really matter
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/r/ Thank you!

Joint research with
e Marc Suchard
* Yong Chen

* George Hripcsak
* Others who've joined the PLE Workgroup call

142



