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Background

* Mental health care varies across populations

* Internal reasons:
» Beliefs
o Attitudes

* External reasons:
« Socioeconomic factors
* Insurance status
» Experiences with care providers
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Project Goals

Characterize populations with mental health conditions, investigate
prevalence of mental health care, and utilization of mental health
resources in rural and urban US communities

 Target 1: Identify vulnerable populations and their characteristics

« Target 2: Enable large scale observational health research

3 IRAD—Mental Health Equity



Project Goals: Target 1

Identify vulnerable populations and their characteristics

* Leverage claims data, electronic health records, surveys
* Develop clinical phenotypes around mental health conditions

* Focus around depression, bipolar disorder, suicidality
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Project Goals: Target 2

Enable Large Scale Observational Health Research

« Utilize a federated research model
 Align research package with OHDSI standards

« Develop strategic partnerships with data partners
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What Is Meant by Characterization

Characterize individuals seen for mental health care at least once
across axes such as:

|
« Condition I | |
- Age i

 Race
 Gender

» Location _I ! l I |
« Care setting

6 IRAD—Mental Health Equity



Characterization Analyses

Baseline Characterization: Characterize the individuals being
seen for mental health care services (related to depression,
bipolar disorder, and suicidal ideation) at least one time —
iIncluding hospitalization events.
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Characterization Schemes

» Follow-up Characterization: Characterize patients who are seen
only one time for mental health conditions. Areas of interest include:

« How do the characteristics of patients who are seen only one time for mental
health conditions differ from those who continue to receive care?

« Of the patients who are seen only once for mental health conditions, do they
continue to be seen for other conditions?

* For those who continue to receive mental health care, how do outcomes for
other conditions differ from those who were seen only once?
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Healthcare disparities continue to be a concern in the US. [1,2] Issues persist across
population factors, such as race [3], socioeconomic status [3], provider availability [4],
geographic location [5], and their intersections [7]. One region that is known for vulnerability
factors [9] is the state of Georgia as it records the poorest mental health outcomes in the US
[8] and is highly racially and ethnically diverse [10]. A pilot characterization was performed to
establish baseline metrics to potentially assess differences in access to care and in diagnostic
practices across bipolar disorder, depression, and suicidality patient subpopulations.

Data Source: ~2.2 million Georgia Medicaid , Medicaid Pationt Counts by Race and Gendor in Goorgia
claims from the Centers for Medicare and o0 10000
Medicaid Services (CMS) were studied over e |||| | e IIIl I

o o

1999 — 2014 via the Personal Summary,
Inpatient, Other Services, and Prescription Drug
MAX Files. The right figure shows the spread of
these patients by gender and age groupings
broken out across race.
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Tools: Novel tooling (fig. & tab. left) was prototyped to define, examine, and explore niche
subpopulations (fig. right) by strata (e.g. race, condition, age group, etc.).
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Outcome Measures: Crude prevalence rates for patient subpopulations were computed. The
period, p, are the years data was examined, simplifying period prevalence, (1), to (2) where, C,

are patients meeting a subpopulation criteria and, N, are all patients matching a subpopulation.
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Crude Prevalence of Depression in Georgia Subpopulations* In the
"Other Race" subpopulations, some negative values are observed.
Calculated metrics across subpopulations were reported for nearly
every examined subpopulation.

Age Group
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Crude Prevalence of Depression in Georgia Subpopulations* Several
negative values were observed for the "Other Race" subpopulations.
Interestingly, several negative values for only the "Black or African American”

feBeLReRe male subpopulations is observed.
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* Values in ()'s represent difference in prevalence rates between that subpopulation and its analogous white subpopulation. The more
negative the value (highlighted red), the higher the compared subpopulation prevalence rate was observed. "N/A" values are those
subpopulations that had to either be suppressed due to privacy considerations or were not represented in this data.

Based on this exploratory approach, Georgia Medicaid subpopulations with chronic mental illness could
face inequitable conditions. Future work includes examining patients' follow-up to care patterns to
assess access to care and diagnostic practices. Possible factors to be examined in this process could be

smaller geographical regions, patient visit types, and other factors. Finally, scrutinizing overall
representativeness or fairness in subpopulations from data such as this could be explored.
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Data Used

« 2.2 Million Medicaid Patients from Georgia
« 1999 - 2014 data range; ICD9; CMS Coding (OMB, etc.)

« CMS MAX Files used:

* Personal Summary
* Inpatient

« Other Services
 Prescription Drug
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Medicaid Patient Counts by Race and Gender in Georgia
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Methods

» Basic stratification algorithms

* Crude prevalence calculation

- C+Cp
N + N] ,

(1) P
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Black or African American
Age Groups Male Prev. (%) Female Prev. (%) Male Prev. (%)

Female Prev. (%) Male Prev. (%) Female Prev. (%) Male Prev. (%) Female Prev. (%)

Other Race

0-9

10-19
20 - 29
30 -39
40 - 49
50 - 59
60 - 69
70-79
80 - 89
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0.43 (0.0)
3.67 (0.0)
6.43 (0.0)
8.71 (0.0)
9.09 (0.0)
8.28 (0.0)
4.8 (0.0)

2.93 (0.0)
2.82 (0.0)
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0.36 (0.0)
6.45 (0.0)
7.75 (0.0)
14.26 (0.0)
17.79 (0.0)
14.41 (0.0)
7.12 (0.0)
3.91 (0.0)
3.63 (0.0)

0.37 (-13.95)
2.6 (-29.16)
7.02 (9.18)
6.62 (-24.0)
7.41 (-18.48)
7.06 (-14.73)
3.85 (-19.79)
1.52 (-48.12)
1.93 (-31.56)

0.31 (-13.89)
3.79 (-41.24)
4.32 (-44.26)
7.82 (-45.16)

11.31 (-36.42)
11.41 (-20.82)

5.16 (-27.53)
2.11 (-46.04)
1.94 (-46.56)

0.23 (-46.51)
3.57 (-2.72)
4.67 (-27.37)
5.97 (-31.46)
9.18 (0.99)
9.24 (11.59)
6.12 (27.5)
2.09 (-28.67)
1.25 (-55.67)

0.18 (-50.0)
4.28 (-33.64)
4.74 (-38.84)
7.35 (-48.46)

14.52 (-18.38)

16.36 (13.53)
10.57 (48.46)
3.9 (-0.26)

2.35 (-35.26)

N/A
0.78 (-78.75)
4.76 (-25.97)
2.21 (-74.63)
3.02 (-66.78)
N/A

1.27 (-73.54)
1.07 (-63.48)
N/A

N/A
1.65 (-74.42)
2.53 (-67.35)
2.61 (-81.7)
5.8 (-67.4)
8.82 (-38.79)
2.31 (-67.56)
1.69 (-56.78)
2.11 (-41.87)
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Black or African American
Age Groups Male Prev. (%) Female Prev. (%) Male Prev. (%)

Female Prev. (%) Male Prev. (%) Female Prev. (%) Male Prev. (%) Female Prev. (%)

Other Race

0-9

10-19
20 - 29
30 -39
40 - 49
50 - 59
60 - 69
70-79
80 - 89
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0.03 (0.0)
0.65 (0.0)
1.09 (0.0)
1.24 (0.0)
1.12 (0.0)
0.91 (0.0)
0.36 (0.0)
N/A

N/A
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0.02 (0.0)
1.13 (0.0)
0.58 (0.0)
1.05 (0.0)
1.19 (0.0)
0.72 (0.0)
0.25 (0.0)
N/A

N/A

0.04 (33.33)
0.44 (-32.31)
1.49 (36.7)
1.38 (11.29)
1.46 (30.36)
1.09 (19.78)
0.32 (-11.11)
N/A

N/A

0.02 (0.0)
0.72 (-36.28)
0.45 (-22.41)
0.54 (-48.57)
0.74 (-37.82)
0.71 (-1.39)
0.21 (-16.0)
0.05 (N/A)
N/A

0.04 (33.33)
0.88 (35.38)
1.04 (-4.59)
1.45 (16.94)
1.85 (65.18)
1.26 (38.46)
0.61 (69.44)
N/A

N/A

N/A
1.06 (-6.19)
0.8 (37.93)
0.99 (-5.71)
1.61 (35.29)
1.35 (87.5)
0.49 (96.0)
0.14 (N/A)
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
0.29 (-74.34)
N/A
0.59 (-43.81)
N/A
N/A
N/A
N/A
N/A
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* Novel research tooling ==

OMOPCDMCohortCreator HealthSampleData

ov JURKAOWAY zulip [joinchat] () CI failing  code style [blue |

DOl 10.5281/zen0do.7052105

Sample health data sources for a variety of health formats and use cases. Uses the
wonderful DataDeps.jl package to automatically download, hash, and manage the

Create cohorts from databases utilizing the OMOP CDM. CouT cacloiyort
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Project Impact

OMOPCDMCohortCreator.jI Tutorials / Beginner Tutorial § O Edit on GitHub £

README.md

Beginner Tutorial § HealthSampleData

Home

« Beginner Tutorial €

Tutorials Sample health data sources for a variety of health formats and use cases. Uses the wonderful

o Environment Set-Up B DataDeps.jl package to automatically download, hash, and manage the download for you.

iiEE o Connecting to the Eunomia Database ma

Beginner Tutorial & o Characterizing Patients Who Have Had Strep Throat @ Provided Data Sources

o Conclusion &
o Environment Set-Up [l Lt

o Appendix &, Observational Medical Outcomes Partnership Common Data

Model (OMOP CDM)

o Connecting to the Eunomia Database g

© Characterizing Patients Who Have Had This tutorial presents a step by step guide on using OMOPCDMCohortCreator to run a mini characterization study!
Strep Throat @ You will learn the basics of OMOPCDMCohortCreator and how to use it with fake data that you could then apply to
e Conclusion i your real data sets. Basic knowledge of Julia (such as installing packages into environments and working with the

o Appendix @, Julia REPL and Julia files) is necessary; you can learn all that here.

Source Description: The Observational Medical Outcomes Partnership (OMOP) was created in
2009 to reach consensus on data types, study designs, and privacy concerns while sharing data.
An important output of OMOP is the OMOP Common Data Model (OMOP CDM) which is an effort
to standardize observational data to enable transferable analysis. [@overhage2012validation] The
OMOP CDM features personcentric design where each domain records personal identity while
prioritizing data protection through the limiting of information that could endanger patient
anonymity. The CDM itself does not require a specific technology to work with the data stored in
this standard.

Using OMOPCDMCohortCreator with R

* Environment Set-Up B

API For this tutorial, you will need to activate an environment; to get into package mode within your Julia REPL, write ]:

Contributing Available OMOP CDM data sources:

pkg> activate TUTORIAL . . ) ) ) e
« Eunomia - Synthetic OMOP CDM data generated by Synthea available in a single sqlite file.

Packages

18 IRAD—Mental Health Equity



Next Steps

* Deploy network studies at Partner Sites
« Expand Baseline & Follow-up Characterization
* Determine best approach in composite analyses

» Work on formalizing further definitions
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Confirmed Data Partners

Tufts Medical Center

» Tufts Medical Center Data
1.2M patients
« Wellforce

N3C COVID database

« Securing access
* 16M patients

Georgia Tech Research Institute
* CMS claims data
* ~40M patients

Boston Medical Center
+ 2M patients

Ajou University
* 1.5M patients
» National data access: 20M+ patients

20 IRAD—Mental Health Equity



Ways to Get Involved!

 Become a data partner!
* Assist in creating chronic mental iliness phenotype definitions

* Discuss final analyses approaches!
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jacob.zelko@gtri.gatech.edu
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Questions?

OHDSI Teams!
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