OHDSI APAC 2022 Tutorial:
An introductory journey from data to evidence
Welcome!
OHDSI’s mission

To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care
The journey to real-world evidence

Patient-level data in source system/schema

Reliable evidence
The journey to real-world evidence

Different types of observational data:
- Populations
 - Pediatric vs. elderly
 - Socioeconomic disparities
- Care setting
 - Inpatient vs. outpatient
 - Primary vs. secondary care
- Data capture process
 - Administrative claims
 - Electronic health records
 - Clinical registries
- Health system
 - Insured vs. uninsured
 - Country policies
The journey to real-world evidence

Types of evidence desired:

- **Clinical characterization**
 - Clinical trial feasibility
 - Treatment utilization
 - Disease natural history
 - Quality improvement

- **Population-level effect estimation**
 - Safety surveillance
 - Comparative effectiveness

- **Patient-level prediction**
 - Precision medicine
 - Disease interception

Patient-level data in source system/schema

Reliable evidence
Full-day Tutorial – November 12
An Introductory Journey From Data To Evidence

<table>
<thead>
<tr>
<th>Time</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-09:00</td>
<td>Registration</td>
</tr>
</tbody>
</table>
| 09:00-09:30 | Overview of the OHDSI Journey: Where are we going
 Patrick Ryan, Vice President, Observational Health Data Analytics, Janssen Research and Development |
| 09:30-10:20 | OMOP Common Data Model and vocabulary
 Mengling 'Mornin' Feng, Ass. Director of Research (Healthcare), Institute of Data Science, National University of Singapore; OHDSI Singapore Chapter Chair
 Mui Van Zandt, Vice President and General Manager, Real World Data and Technology, IQVIA |
| 10:20-10:30 | Break |
| 10:30-11:20 | ETL a source database into OMOP CDM
 Alex PA. Nguyen, Assistant Research Fellow, Office of Data Science, Taipei Medical University
 Mui Van Zandt, Director of Product Development, IQVIA |
| 11:20-11:30 | Break |
| 11:30-12:20 | Creating cohort definitions
 Seng Chan You, Assistant Professor, Department of Biomedicine Systems Informatics, Yonsei University College of Medicine |
| 12:20-13:30 | Lunch |
| 13:30-14:20 | Phenotype evaluation
 Patrick Ryan, Vice President, Observational Health Data Analytics, Janssen Research and Development |
| 14:20-14:30 | Break |
| 14:30-15:20 | Characterization
 Sarah Seager, Director of Data Science, OMOP, IQVIA
 Martijn Schuemie, Observational Health Data Analytics, Johnson & Johnson and Department of Biostatistics, UCLA |
| 15:20-15:30 | Break |
| 15:30-16:20 | Estimation
 Nicole Pratt, Associate Professor, University of South Australia
 Marc Suchard, Professor, Departments of Biomathematics and Human Genetics, UCLA; Department of Biostatistics, UCLA; |
| 16:20-16:30 | Break |
| 16:30-17:20 | Prediction
 Cynthia Yang, Graduate student, Department of Medical Informatics, Erasmus MC
 Chungsoo Kim, Ph.D. candidate, Department of Biomedical Informatics, Ajou University |
| 17:20-17:30 | Recap of the OHDSI Journey: Where do we go from here
 Jason C. Hsu, Associate Professor, International Ph.D. Program in Biotech and Healthcare Management, College of Management, College of Medicine, Taipei Medical University |
To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care.
HADES (formally known as the OHDSI Methods Library) is a set of open source R packages for large scale analytics, including population characterization, population-level causal effect estimation, and patient-level prediction.

The packages offer R functions that together can be used to perform an observation study from data to estimates and supporting statistics, figures, and tables. The packages interact directly with observational data in the Common Data Model (CDM), and are designed to support both large datasets and large numbers of analyses (e.g. for testing many hypotheses including control hypotheses, and testing many analyses design variations). For this purpose, each Method package includes functions for specifying and subsequently executing multiple analyses efficiently. HADES supports best practices for use of observational data as learned from previous and ongoing research, such as transparency, reproducibility, as well as measuring of the operating characteristics of methods in a particular context and subsequent empirical calibration of estimates produced by the methods.

HADES has already been used in many published clinical and methodological studies, as can be seen in the Publications section.

Installation

See the Support section for instructions on setting up the R environment for HADES, including Java and RTools. Each package in HADES can be installed independently, but it is also possible to install all HADES packages at once, as described here. You can learn how connect to your database using HADES here.

Learn How to Use HADES
HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use ZESTRIL safely and effectively. See full prescribing information for ZESTRIL ZESTRIL® (lisinopril) tablets, for oral use
Initial U.S. Approval: 1988

WARNING: FETAL TOXICITY
See full prescribing information for complete boxed warning.
- When pregnancy is detected, discontinue Zestrel as soon as possible. (5.1)
- Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. (5.1)

INDICATIONS AND USAGE
Zestrel is an angiotensin converting enzyme (ACE) inhibitor indicated for:
- Treatment of hypertension in adults and pediatric patients 6 years of age and older (1.1)
- Adjunct therapy for heart failure (1.2)
- Treatment of Acute Myocardial Infarction (1.3)
Angioedema

Head and Neck Angioedema

Angioedema of the face, extremities, lips, tongue, glottis and/or larynx, including some fatal reactions, have occurred in patients treated with angiotensin converting enzyme inhibitors, including Zestril, at any time during treatment. Patients with involvement of the tongue, glottis or larynx are likely to experience airway obstruction, especially those with a history of airway surgery. Zestril should be promptly discontinued and appropriate therapy and monitoring should be provided until complete and sustained resolution of signs and symptoms of angioedema has occurred.

Patients with a history of angioedema unrelated to ACE inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor [see Contraindications (4)]. ACE inhibitors have been associated with a higher rate of angioedema in black than in non-black patients.

Intestinal Angioedema

Intestinal angioedema has occurred in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. In some cases, the angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor.
Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis

Marc A Suchard, Martijn J Schuemie, Harlan M Krumholz, Seng Chan You, Ruijun Chen, Nicole Pratt, Christian G Reich, Jon Duke, David Madigan, George Hripcsak, Patrick B Ryan

Summary

Background Uncertainty remains about the optimal monotherapy for hypertension, with current guidelines recommending any primary agent among the first-line drug classes thiazide or thiazide-like diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine calcium channel blockers, and non-dihydropyridine calcium channel blockers, in the absence of comorbid indications. Randomised trials have not further refined this choice.

Method We developed comprehensive comparative effectiveness and health outcomes data for chronic hypertension.
Tutorial infrastructure

- Atlas:
 http://tutorial.ap-northeast-1.elasticbeanstalk.com

- Jupyter:
 http://jupyter.tutorial.ap-northeast-1.elasticbeanstalk.com

- RStudio:
 http://rstudio.tutorial.ap-northeast-1.elasticbeanstalk.com

There are 170 RStudio user accounts: 'user1' - 'user170'. The password is 'Password1'