

APAC Community Call Training Session #5

September 21, 2023

Agenda

- OHDSI News
 - Global Symposium: Registrations & Agenda
 - Global Symposium: OHDSI Got Talent!
 - APAC Scientific Forum Updates
- Training Session #5: Multiple Sclerosis
 - Characterization: incidence of progressive multifocal leukoencephalopathy (PML) during Multiple Sclerosis (MS) biologic exposure by Thamir M. Alshammari
 - Treatment, utilisation and safety of medicines for Multiple Sclerosis (TELEMUS) by Nicole Pratt

Global Symposium: Registrations & Agenda

• Registrations are now open at <u>https://www.eventbrite.com/e/544413795317</u>!

Friday, October 20

2023 OHDSI GLOBAL SYMPOSIUM

THE 2023 OHDSI SYMPOSIUM WILL TAKE PLACE OCT. 20-22 AT THE HILTON EAST BRUNSWICK HOTEL AND EXEC. MEETING CENTER IN EAST BRUNSWICK, NJ, USA.

♡⊥

Global Symposium: Registrations & Agenda

- Full agenda now available at https://bit.ly/OHDSI2023-Agenda
 - Includes final list of poster presentations, software demonstrations and lightning talks selected

OHDSI 2023 Symposium Oct. 20-22, 2023 Hilton East Brunswick Hotel & Executive Meeting Center

Agenda · Friday, Oct. 20

Time	Торіс
7:30 - 8:30 am East Brunswick Room + Grand Ballroom Foyer	Symposium Registration, Lite Breakfast Buffet, All-Day Exhibits
8:30 - 9:30 am Grand Ballroom	State of the Community OHDSI: Where have we been? Where are we going? George Hripcsak, Columbia Univ. Community Highlights: • OMOP CDM users and the OHDSI data network Clair Blacketer, Johnson & Johnson • OHDSI standardized vocabularies Alexander Davydov, Odysseus Data Services • OHDSI's open-source community Katy Sadowski, Boehringer Ingelheim • OHDSI Europe 2024 Peter Rijnbeek, Erasmus MC • OHDSI Asia-Pacific 2024 Mengling Feng, National Univ. of Singapore

OHDSI 2023 Symposium Oct. 20-22, 2023 Hilton East Brunswick Hotel & Executive Meeting Center

Agenda · Saturday, Oct. 21

Time	Торіс
7:00 - 8:00 am Grand Ballroom Foyer	Lite Breakfast Buffet, All-Day Exhibits
8:00 am - 12:00 pm	Introduction to OHDSI Tutorial
Various rooms	Common Data Model/Network Data Quality WG Meeting
	Health Analytics Data-to-Evidence Suite (HADES) Hackathon
	Health EquityWG Meeting
	Medical Imaging WG Meeting
	Natural Language Processing WG Meeting
	OHDSI Industry WG Kickoff Meeting
	Oncology WG Meeting
	Phenotype Development & Evaluation WG Meeting
	Pregnancy and Reproductive Health Group (PRHeG) WG Meeting

Global Symposium: OHDSI Got Talent!

- First ever OHDSI talent show will take place at this year's global symposium!
- Submissions are due Saturday, September 23, 9 a.m. Korea time
 - Submission form: <u>https://docs.google.com/forms/d/e/1FAIpQLScxU6bNAxCmbphmNOGUfUEqf-SIRnHHi_CZBtXLjped_QAbtA/viewform</u>

2023 OHDSI GOT TALENT SUBMISSION FORM

The success of the OHDSI community rests entirely in the talents of our collaborators. As we have learned, that talent extends well beyond excellence in open community data standards, methodological research, open-source analytic development, and clinical applications.

At the OHDSI Global Symposium on Friday, October 20, at 7:00pmET, we will be holding our first ever 'OHDSI Got Talent' event.

As with the popular television series, we will have a series of contestants perform 4-6 minute routines to showcase their talent, and a panel of judges will share their thoughts on what they have seen. The OHDSI community will vote for their favorite and we will crown a winner!

Do you sing or play a musical instrument? Do you dance? Can you do magic or comedy? Do you have some other unique skill that you can demonstrate in 6 minutes or less? We want to see it!

If you are interested in participating, please fill out the form below. The deadline to submit this form is 8pm ET on Friday, September 22; you will be notified of your acceptance by Friday, September 29.

APAC Scientific Forum Updates

- This month's scientific forum session on OHDSI vocabularies with Anna received a lot of interest from the community!
 - Recording is available on the APAC Scientific Forum Teams channel or https://ohdsi.org/apac/
- Anna will join us again at next month's scientific forum on <u>October 5</u> to go over use cases and answer any questions the community has
- Please participate in an ongoing survey so that we can have more sessions like this!
 - Support areas follow-up survey: <u>https://forms.office.com/r/sGXSnXV4G3</u>

Characterization: incidence of progressive multifocal leukoencephalopathy (PML) during Multiple Sclerosis (MS) biologic exposure

Thamir M. Alshammari, PhD

Research question

• Amongst patients with MS who are **new users** of biologic treatment (e.g. Alemtuzumab, Natalizumab, Ocrelizumab, Ofatumumab), how many patients experience PML while on treatment?

Multiple scelrosis

• Multiple sclerosis (MS) is the most common disabling neurological disease of young adults with symptom onset generally occurring between the ages of 20 to 40 years

• Myelin is a substance that makes up the protective sheath (myelin sheath) that coats nerve fibers (axons)

• MS is an immune inflammatory disease that assaults myelinated axons in the central nervous system , damaging the myelin and axon to varying degrees

Risk factors

- Females gender
- Age
 - Onset usually occurs around 20 and 40 years of age. However, younger and older people can be affected
- Genetics
 - A gene on chromosome 6p21
- Family History
- Diseases (viral infection, e.g., Epstein-Barr virus)
- Race
 - White people, particularly those of Northern European descent, are at highest risk of developing MS

Risk factors

- Injury
- Certain autoimmune diseases
 - E.g., thyroid, psoriasis
- Environmental factors
 - Low vitamin D level (who spend more time in the sun and those with relatively **higher levels of vitamin D**, has less risk)

Diagnosis

- No single test used to diagnose MS
- Different tests to rule out or confirm the diagnosis
- MRI scans of the brain and spinal cord to look for the characteristic lesions of MS
- Lumbar puncture (sometimes called a spinal tap) looking for proteins and inflammatory cells associated with the disease
- Evoked potential tests, which use electrodes placed on the skin and painless electric signals

McDonald criteria

Clinical presentation	Additional information required
Attacks: \geq 2 Clinical evidence \geq 2 lesions with historical evidence of past attack.	None. Clinical evidence is adequate. Further evidence is desirable.
Attacks: \geq 2. Clinical evidence of one lesion.	Transmission in space as shown by MRI, or waiting for additional clinical research involving a different site.
Attacks: 1. Clinical evidence \geq 2 lesions.	Timing of dissemination exhibited by MRI or second attack or demonstration of OCBs in the CSF.
Attacks: 1. Clinical evidence of one lesion.	Space dissemination is demonstrated by MRI or waiting for a second attack implicating a different CNS site. and time dissemination confirmed via MRI or a second attack.
Insidious neurologic progression is indicative of MS	Year of disease development and spread in space, demonstrated by1 or more T2 lesions in the brain in areas characterized by MS 2 or more T2 spinal cord focal lesions with positive CSF.

TABLE 1: MS diagnosis according to McDonald's criteria

MS: multiple sclerosis, CSF: cerebrospinal fluid, CNS: central nervous system, MRI: magnetic resonance imaging, OCBs: oligoclonal bands [60,61]

MS types

- **1. Clinically isolated syndrome (CIS):** Has a first episode of MS symptoms, HCPs often categorize it as CIS. Not everyone who has CIS goes on to develop multiple sclerosis.
- 2. Relapsing-remitting MS (RRMS): This is the most common form of multiple sclerosis. People with RRMS have flare-ups -- also called relapse or exacerbation -- of new or worsening symptoms. Periods of remission follow (when symptoms stabilize or go away).
- **3. Primary progressive MS (PPMS):** People diagnosed with PPMS have symptoms that slowly and gradually worsen without any periods of relapse or remission.
- 4. Secondary progressive MS (SPMS): In many cases, people originally diagnosed with RRMS eventually progress to SPMS. With secondary-progressive multiple sclerosis, you continue to accumulate nerve damage. Your symptoms progressively worsen. While you may still experience some relapses or flares (when symptoms increase), you no longer have periods of remission afterward (when symptoms stabilize or go away).

Treatment

How Biologics Are Shaping Cancer and MS

More takeaways from the Biologic Therapies VI Summit

Among the highlights of Cleveland Clinic's Biologic Therapies VI Summit from spring 2015 was an unprecedented session titled "Biological Cross Fire: What Can We Learn From Each Other?" It brought together six expert physicians from diverse disciplines to spotlight how biologics are being used or studied

Treatment

- Treatment of the attacks
 - Corticosteroids
 - Plasma exchange (plasmapheresis)

• Disease-modifying therapies (DMTs)

• Relapse management medications

Treatment

TABLE 1 | Current therapeutic treatments for MS.

	Medication/medication class	Mechanism of action	Route and dosing	Half life	Approved for:	Pivotal clinical trials	Adverse effects	Lab monitoring
Traditiona	ll injectables							
Interferons	Interferon beta-1a (Rebif)	Immune modulation	SQ; 44 mcg 3x/week	$69\pm37\mathrm{h}$	CIS; RRMS; Active SPMS	PRISMS	Common : Injection site reaction Flu-like symptoms Headache Warnings: Idiopathic thrombocytopenia Hyper/ hypothyroidism Rarely autoimmune hepatitis	Baseline : CBC, LFTs, TSH, TB, T cell subsets. Routine : CBC, LFTs q6 months
	Interferon beta-1a (Avonex)	Immune modulation	IM; 30 mcg 1x/week	10h	CIS; RRMS; Active SPMS			
	Interferon beta-1b; (Betaseron, Extavia)	Immune modulation	SQ; 250 mcg QoD	8 min-4.3 h	CIS; RRMS; Active SPMS	IFNB; BENEFIT		
	Pegylated interferon beta-1a (Plegridy)	Immune modulation	SQ; 125 mcg every 2 weeks	78h	CIS; RRMS; Active SPMS	ADVANCE		
	Glatiramer acetate; (Copaxone, Glatopa)	Immune modulation	SQ; 20 mg daily or 40 mg TIW	Unknown	CIS; RRMS; Active SPMS	GALA; PRECISE	Common: Injection site reaction Chest tightness Anxiety Lipoatrophy Skin necrosis	None required

	Medication/medicatior class	n Mechanism of action	Route and dosing	Half life	Approved for:	Pivotal clinical trials	Adverse effects	Lab monitoring
S1P receptor modulators	Fingolimod; (Gilenya)	Lymphocyte sequestration and altered cell migration; Binds to S1P receptor subtypes 1,3,4,5	PO; 0.5 mg daily; 0.25 mg daily if <40 kg; First dose observation required	6–9 days	CIS; RRMS; Active SPMS; Pediatric MS	FREEDOMS; TRANSFORMS; PARADIGMS	Common: Headache Warnings: Rebound syndrome Tumefactive lesions Macular edema Bradycardia/AV block Liver toxicity Hypertension Malignancy risk Seizures Fetal ris	Baseline : VZV IgG, OCT, CBC, LFTs, EKG, FEV1 if hx of COPD/asthma Routine : CBC, LFTs q6 months, OCT after 3-4 months, skin exams yearly
	Siponimod; (Mayzent)	Binds S1P receptor subtypes 1,5	PO; Titrate to 2 mg daily	30 h	CIS; RRMS; Active SPMS	EXPAND	Warnings: CYP2C9*3/*3 genotype	
	Ozanimod; (Zeposia)	Binds S1P receptor subtypes 1, 5	PO; Titrate to 0.92 mg daily	21 h to 11 days	CIS; RRMS; Active SPMS	SUNBEAM	Common: Nasopharyngitis headache URI Warnings: Untreated sleep apnea Concomintant MAOi use	
	Ponesimod; (Ponvory)	Binds S1P receptor subtype 1	PO; Titrate to 20 mg daily	33 h	CIS; RRMS; Active SPMS	OPTIMUM	Warnings: Bradycardia Hepatobiliary disorders Pulmonary events Macular edema Seizures	
	Cladribine (Mavenclad)	Cytotoxic effects on T and B cells by impairing DNA synthesis	PO; 3.5 mg/kg divided into two yearly treatment courses, each with 2 cycles Max 20 mg daily	24h	RRMS; Active SPMS	CLARITY	Common: Headache URI HSV (prophylaxis needed if lymphocyte <200) Warnings: Lymphopenia Malignancy risk Fetal risk	Baseline : CBC, HIV, HBV, HCV, TB, VZV IgG, LFT, cancer screening Routine : CBC 2 and 6 months after each course and before 2 nd treatment
Oral medic	cations under investigation	n						
BTK inhibitors	Evobrutinib	Myeloid and B cell depletion	PO; 25–75 mg daily	2h	RRMS	Phase 2 completed	Common: Headache Warnings: Liver toxici	TBD

	Natalizumab; (Tysabi	ri) Altered imm migration v α-4 β-1 and integrins	nune cell ia blocking d β-7	IV; SQ (Europe on 300 mg q4-6 wee	y); 11 ± 4 days <s< th=""><th>CIS; RRMS; Active SPMS</th><th>AFFIRM; SENTINEL</th><th>Common: Headache Warnings: PML Rebound syndrome</th><th>Baseline: JCV Ab, CBC, LFT Routine: JCV Ab, CBC, LFT q6 months</th></s<>	CIS; RRMS; Active SPMS	AFFIRM; SENTINEL	Common: Headache Warnings: PML Rebound syndrome	Baseline : JCV Ab, CBC, LFT Routine : JCV Ab, CBC, LFT q6 months
sell depleting therapy	Ocrelizumab; (Ocrevus)	CD20+ B depletion	cell	IV; Induction: 300 mg day 1 and day 14; Maintenance: 600 mg q6 month	26 days s	CIS; RRMS; Active SPMS; PPMS	OPERA I and II; ORATORIO	Common: Infusion reaction URI Warnings: Malignancy Hypogammaglobulinemia Infection risk PML	Baseline : TB, HBV, HCV, CBC, LFTs, B cell subset, immunoglobulins Routine : CBC, LFTs, B cell subset, immunoglobulins,
E	Ofatumumab; (Kesimpta)			SQ; Induction: 20 mg weeks 0, 1 2; Maintenance: 20 mg q4 weeks	16 days	CIS; RRMS; Active SPMS	MIRROR; ASCLEPIOS I and II	Common: Injection site reaction URI Warnings: Infection Hypogammaglobulinemia	
	Alemtuzumab; (Lemtrada)	CD52+ T a natural kille monocytes macrophag	and B cells, r cells, , jes	IV; Year 1: 12 mg/day daily x 5 days (total 60 mg) Year 2: 12 mg/da daily x 3 days (tota 36 mg)	14 days y al	RRMS; Active SPM	S CARE-MS I	Common: Infusion reaction Headache Warnings: Hypo/hyperthyroidism Risk for autoimmune disease Strokes	Baseline : CBC, urinalysis, creatinine, TSH, VZV IgG, TB, HIV, skin exam Routine : CBC, creatinine, urinalysis monthly, and TSH q3 months, annual skin exam
	Mitoxantrone; (Novantrone)	Inhibition o division	f cell	IV; 12mg/m ² ever months; maximum cumulative dose 1 mg/m ²	/ 3 α: 6-12 min; β: 1	RRMS; SPMS; 5 h; PRMS	MIMS	Warnings: Myocardial toxicity Bone marrow suppression	Baseline : CBC, LFT, echocardiogram, pregnancy testing
-approved	oral medications								
Fumarates	Dimethyl fumarate; Tecfidera)	Immune modulation	PO; Titra 240 mg E	te up to 1 h BID		CIS; RRMS; Active SPMS	DEFINE; CONFIRM	Common: Flushing Gl upset Warnings: Lymphopenia PML (related to lymphopenia)	Baseline : CBC, LFTs, total bilirubin, T cell subsets, TSH, TB, pregnancy screen Routine : CBC, LFTs q6-12 months, T cell subsets if needed
D (\ N (E	Diroximel fumarate; Vumerity)	Immune modulation	PO; Titra 462 mg E	te up to 1 h 3ID		CIS; RRMS; Active SPMS	EVOLVE- MS2		
	Monomethyl fumarate; Bafiertam)	Immune modulation	PO; Titra 190 mg E	te up to 0.5 BID	h	CIS; RRMS; Active SPMS			
T (/	Feriflunomide; Aubagio)	Inhibition of cell division	PO; 7 or	14 mg daily 19	days	CIS; RRMS; Active SPMS	TEMSO; TOWER	Common: Headache Hair thinning Warning: Hepatotoxicity SJS/TEN Fetal malformations	Baseline : TB, pregnan screen, BP, CBC, LFTs Routine : LFTs, CBC, E monitoring

Oral medications

Drug name	Biologics
Cladribine	
Dimethyl Fumarate	
Fingolimod	
Ozanimod	
Ponesimod	
Siponimod	
Teriflunomide	

Injected Medications

Drug name	Biologics
Glatiramer	
Interferon Beta-1a	\checkmark
Interferon Beta-1b	\checkmark
Ofatumumab	\checkmark
Peginterferon beta-1a	\checkmark

Infused Medications

Drug name	Biologics
Natalizumab	\checkmark
Alemtuzumab	\checkmark
Ocrelizumab	\checkmark
Mitoxantrone	

Outcome

• Progressive multifocal leukoencephalopathy (PML)

• PML is a rare, often fatal demyelinating disease of the central nervous system that occurs almost exclusively in immunosuppressed individuals

• This disease is caused by the polyomavirus JC (JCV)

Outcome

- Found in
 - Patients with lymphoproliferative and myeloproliferative diseases
 - Solid organ malignancies
 - Autoimmune diseases, and
 - In patients on antirejection immunosuppressive drugs after organ transplantation or patients treated with immunomodulatory therapies

• There is no specific treatment for PML, which has a high mortality rate

Risk of nataliz with MS is redu

Lana Zhovtis Ryerson, MD,* John Foley, MD, Ryan R. Metzger, PhD, Judith D. Goldberg, S Rachna Kasliwal, MPH, Zheng Ren, PhD, Chr Nolan Campbell, PhD

Neurology[®] 2019;93:e1452-e1462. doi:10.12

Abstract

Objective

To use the large dataset from the (TOUCH) program to compare progr natalizumab extended interval dosing multiple sclerosis (MS).

Methods

This retrospective cohort study includ in the TOUCH database as of June 1, 2 planned analyses using Kaplan-Meier r of PML was analyzed by Cox regressic since natalizumab initiation, and cumi

Results

This study included 35,521 patients analysis: 3,331 EID, 15,424 SID; tertia intervals were 35.0 to 43.0 and 29.8 t Hazard ratios (95% confidence interva 0.001) and 0.12 (0.05–0.29, p < 0.001) Relative risk reductions were 94% an analyses, respectively. The tertiary and

JAMA Neurology | Original Investigation

Infection Risks Among Patients With Multiple Sclerosis Treated With Fingolimod, Natalizumab, Rituximab, and Injectable Therapies

Gustavo Luna, MSc: Peter Alping, MD: Joachim Burman, MD. PhD: Katharina Fink, MD. PhD:

Anna Fogdell-Hahn, PhD								
Jan Lycke, MD, PhD; Petr Magnus Vrethem, MD, Pl		Contents lists available at ScienceDirect	MULTIPLE SCLEROSIS					
IMPORTANCE Alth (MS) have been as interferon beta an	ELSEVIER	Multiple Sclerosis and Related Disorders journal homepage: www.elsevier.com/locate/msard						
well established in with rituximab, wh	Review article							
OBJECTIVE To example treatments for MS	Use of natalizumab in persons with multiple sclerosis: 2022 update							
DESIGN, SETTING, A conducted in Swee prospective data c patients with relar	Sarah A. Morrow ^{a,*} , Fraser Clift ^b , Virginia Devonshire ^c , Emmanuelle Lapointe ^d , Raphael Schneider ^e , Mark Stefanelli ^b , Reza Vosoughi ^e							
initiating treatmer an age-matched a	^a Department of Clinical Neurological Sciences, Western University, London, ON, Canada ^b Department of Neurology, Memorial University of Newfoundland, St. John's, NL, Canada							
EXPOSURES Treatr	^c Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, BC, Canada ^d Department of Medicine, Division of Neurology, University of Sherbrooke, QC, Canada ^c Department of Medicine, Division of Neurology, University of Sherbrooke, QC, Canada							
MAIN OUTCOMES A hospitalization. Ac antiviral medicatio								
RESULTS A total of	ARTICLE INFO	O A B S T R A C T						

fingolimod, and 22 Keywords: 42 645 individuals. Multiple sclerosis Natalizumab treatment start ran Clinical practice The crude rate of ir Disease-modifying therapy the general popula person-years), and 10.8-18.5] per 100(person-years), and After confounder a CI, 1.11-2.61]) but no 0.71-1.77]) compare during rituximab tr natalizumab (HR, 1

Background: Natalizumab is a humanized monoclonal antibody used for treatment of highly active relapsingremitting multiple sclerosis (MS). With more than 15 years of post-marketing experience with natalizumab in Canada, several real-world studies have shown the long-term efficacy and safety of natalizumab. In addition, risk stratification/mitigation strategies for progressive leukoencephalopathy (PML), an adverse effect associated with natalizumab based on the John Cunningham virus (JCV) index; treatment duration beyond 24 months; and prior exposure to immunosuppressant drugs have been developed.

Methods: A group of neurologists from various MS clinics across Canada met in September 2021 to update the 2015 Canadian practice recommendations for the use of natalizumab in persons with MS (PwMS).

Results: The recommendations focused on the long-term efficacy and safety data from real-world studies, patient selection according to JCV index criteria, risk management strategies for PML (including extended interval dosing), and options for switching to currently available disease-modifying therapies for MS.

Conclusions: The recommendations of clinical neurologists seek to optimize the management of PwMS who may benefit from treatment with natalizumab.

Search

Updated r brain infe

Hum

Medicines V

Press release 12/02/2

New advice may he

EMA's Pharmacovigila progressive multifoca and has recommende caused by John Cunni

Recent studies sugge:

Dimethyl fumarate (Tecfidera): updated advice on the risk of

progressive U.S. FOOD & DRUG Leukoencept

associated w

The monitoring required dimethyl fumarate (following a small nu leukoencephalopat lymphopenia. Conti advise patients to s experience any sym

FDA Drug Safety Communication: New risk factor for Progressive Multifocal Leukoencephalopathy (PML) associated with Tysabri (natalizumab)

FDA Drug Safety Communication: New risk factor for Progressive Multifocal Leukoencephalopathy (PML) associated with Tysabri (natalizumab

f Share 🍯 Tweet 🛛 in Linkedin 🔄 Email 🖨 Print

Drug Safety and Availability

From: Medicines and Health

Published 7 January 2021

Information about Nitrosamine Impurities in Medications This information is an update to the <u>FDA Drug Safety Communication: Safety update on Progressive Multifocal</u> <u>Leukoencephalopathy (PML) associated with Tysabri (natalizumab)</u> issued on April 22, 2011 and <u>FDA Drug Safety Communication:</u> <u>Risk of Progressive Multifocal Leukoencephalopathy (PML) with the use of Tysabri (natalizumab)</u> issued on February 5, 2010. **Content current as of:** 02/13/2018

Q Search

≡ Mer

Regulated Product(s) Drugs

Safety Announcement

A J Jiti and T. Camerian Cambridge Dations

Objectives

• The primary objective of this study is to describe the demographic and clinical characteristics of MS patients who are using high-efficacy infusion and injectable biological medications and developed the outcome of interest (i.e., PML)

• The secondary objectives are to estimate the incidence rate of PML among MS patients using high-efficacy infusion and injectable biological medications.

MS Clinical definition

- One of three MS types will be included in the study (I.e., except CIS MS).
- MS ICD10 code is G35, while the MS ICD9 code is 340.
- In previous work done during phenotype phebruary to phenotype MS, different definitions were used, 1) Culpepper, 2) Widdifield, and 3) Earliest occurrence of Multiple sclerosis diagnosis.
- The Culpepper definition used ICD9 340 and the earliest occurrence of MS diagnosis, requiring ≥3 MS-related occurrences of any combination of inpatient or outpatient diagnosis or MS-specific disease-modifying therapies (DMT) within 1 year. Widdifield definition used ICD9 340 and ICD10 G35, requiring the earliest occurrence of MS diagnosis, 1 hospitalization with MS, or 5+ occurrence of MS diagnosis in 2 years. In contrast, the third method was using the earliest occurrence of MS diagnosis.

Target cohort

- **Target Cohort #1**: Persons with MS will have:
- ≥1 records of MS diagnosis and ≥1 prescription for MS high-efficacy infusion or and injectable biological medications for more than 1 year period.

- **Study population:** Patients diagnosed with MS (except CIS, see below) who meet one of the following criteria: First ever exposure to high-efficacy infusion and injectable biological medications
 - At least 365 days of observation time prior to the index date
 - No diagnosis of PML preceding the index date
 - We will have two groups, natalizumab group and non-natalizumab group (I.e., other biologics)

Exposure group

• Multiple sclerosis patients who are new users of one the following medications, mitoxantrone, natalizumab, alemtuzumab, ocrelizumab, ubilituximab, and ofatumumab.

Index date

• Index date is defined as first exposure to high-efficacy infusion and injectable biological medications

Questions for discussions

• How we solve the problem of "carry-over" cases when we determine the incidence of PML among different medications

• There is a debate about what will be the TAR, 2 years could be more could be less.

Thank you

TrEatment, utiLisation and safEty of medicines for MUltiple Sclerosis (TELEMUS)

Telemus is Eurymus' son, a prophet and a master at reading signs

nicole.pratt@unisa.edu.au

1. Characterisation

- Incidence and prevalence of MS medicines over time
 - By product
 - Early aggressive v Traditional medicine

- 2. Cohort Pathways
 - Overall by product and Group
 - By era

\times

Early aggressive/early highly effective	Concept_ID	Formulation	Treatment	Indication
natalizumab	735843	infusion	Monthly (30)	Potentially used in Crohns
alemtuzumab	1312706	infusion	12 months	
Ocrelizumab	1593457	infusion	6 monthly	
rituximab	1314273			Potentially used in RA
ofatumumab	40167582	injection	30 days	
cladribine	19054825	Oral (table)	30 days	Also used in cancer (L01BB04 injection)
Traditional/escalation treatments	Concept_ID	Formulation	Treatment	Indication
peginterferon beta-1a	45775146	injection	30 days	
Glatiramer (acetate)	751889	injection	30 days	
teriflunomide	42900584	oral	30 days	
diroximel fumarate	37497593	delayed-release capsules		
dimethyl fumarate	43526424	oral	30 days	
fingolimod	40226579	oral	30 days	
siponimod	1510913	oral	30 days	
ozanimod	37499437	oral	30 days	
Interferon beta-1a	722424	injection	30 days	
interferon beta-1b	713196	injection	30 days	
Other Approved	Concept_ID	Formulation	Treatment	Indication
Daclizumab	19036892	injection	30 days	
Mitoxantrone	1309188		3 months	
ponesimod	740121	oral	?	

Creating Cohorts

- ATLAS: Home (ohdsi.org)
 - https://atlas-demo.ohdsi.org/#/home

• [MS] Cohorts

	ATLAS		
*	Home	🐣 Cohort Definitions	
8	Data Sources		
۹	Search		Show columns Copy CSV Show 50 V entries
Ħ	Concept Sets		Showing 1 to 38 of 38 entries (filtered from 14,375 total entries)
		-	Id 🔶 Name
~	Conort Definitions	Created 2+ Weeks App (14303)	1781833 [MS] any single med EarlyAgressive
M	Characterizations	Last Week (42)	1781832 [MS] any single med Traditional
		This Week (22) Within 24 Hours (8)	1779571 (MS) any single med
ф.	Cohort Pathways	T Updated	1779615 [MS] natalizumab exposure
	Incidence Dates	2+ Weeks Ago (14299)	1779614 [MS] mitoxantrone exposure
7	Incidence Rates	Last Week (41)	1779613 [MS] interferon beta-1b exposure
8	Profiles	Within 24 Hours (9)	1779612 [MS] interferon beta-1a exposure
		T Author	1779611 [MS] glatiramer exposure
<u>4</u> 6	Estimation	anonymous (14285)	1779610 [MS] fingeliged exposure
	Deadiation	T Designs	1779600 [MS] dimethal fumarate exposure
*	Prediction	Other designs (14375)	1770609 (MS) dealerunge ausgewich
æ	Reusables		
			1779007 (<u>MS) cladribine exposure</u>
≣	Jobs		1779621 [MS] siponimod exposure
			1779620 [MS] diroximel fumarate exposure
46	Configuration		1779619 [MS] teriflunomide exposure
	Feedback		1779618 [MS] rituximab exposure
			1779617 [MS] peginterferon beta-1a exposure
			1779616 [MS] ocrelizumab exposure

Treatment Pathways

Legend	Sunburst plot	Path details			
Target Cohort		No path selected: click path to see details.			
[MS] any single med					
Target cohort count: 3,074 Persons with pathways count: 3,074 Persons with pathways portion: 100.0%					
Event Cohorts		Executions > Dathwave Analysis for SVNDLE 5%			
[MS] cladribine exposure		Date: 07/12/2022 4:39 PM Design: -143330234			
[MS] fingolimod exposure					
[MS] first mitoxantrone exposure		Cohorts			
[MS] diroximel fumarate exposure		4 items selected -			
[MS] first glatiramer exposure	MS] first glatiramer exposure		Dathwaye Analyzie for IMS1 Cohort Dathwaye (1)		
[MS] first interferon beta-1b exposure		Viguaization Tabular			
[MS] first dimethyl fumarate exposure		Legend Sunburst	plot	Path details	
[MS] siponimod exposure		Target Cohort		No path selected: click path to see details.	
[MS] first daclizumab exposure		[MS] Culpepper 3x [medication only]			
[MS] first interferon beta-1a exposure		Persons with pathways count: 3 Persons with pathways portion: 100.0%			
[MS] alemtuzumab first exposure		Event Cohorts			
[MS] peginterferon beta-1a exposure		[MS] cladribine exposure			
[MS] first natalizumab exposure		[MS] fingolimod exposure			
[MS] first ocrelizumab exposure		[MS] first mitoxantrone exposure [MS] diroximel fumarate exposure			
[MS] teriflunomide exposure		[MS] first glatiramer exposure			
[MS] rituximab exposure		[MS] first interferon beta-1b exposure			
		[MS] first daclizumab exposure			
Inclusion of	rituvimah and	[MS] first interferon beta-1a exposure			
		[MS] alemtuzumab first exposure			
mitoxantro	ne may be problematic if	[MS] peginterferon beta-1a exposure			
		[MS] first orrelizumab exposure			
we are unal	we are unable to use diagnoses as				
well as rituximab can be used for		[MS] rituximab exposure			

multiple indications

(Thamer's Study) Incidence of PML in MS treated

- What is the rate of PML in patients with MS?
 - After diagnosis (see Phenotype)
 - After initiation of any biologic medicines (natalizumab, ocrelizumab, alemtuzumab, ofatumumab)
 - After initiation of other DMTs for MS (traditional)

Culpepper: Earliest occurrence of MS diagnosis, requiring ≥3 [MS-related occurrences of any combination of inpatient or outpatient diagnosis OR specific disease-modifying therapies (DMT)] within a 1-year time period

Why is the treatment pathway so important

Why is the treatment pathway so important? 2014-2019

Prevalent new users

Incidence of PML in MS treated

• Does the initiation of biologic medicines affect the risk of PML in patients with MS?

- T: Initiation of biologic medicine (natalizumab, ocrelizumab, alemtuzumab, ofatumumab)
- C: Initiation of other DMTs for MS
- O: PML

New user design / prevalent new user

- Active comparator, new-user (ACNU) study
 - starts follow-up at the time of initiation
 - exclude those who have used either the treatment of interest or the active comparator prior.
 - avoids potential bias from
 - confounding by indication, induced by including nonusers,
 - healthy adherer bias (i.e., selection bias) and depletion of susceptibles induced by including prevalent users,
- The prevalent new-user design includes adopters of a new treatment who switched from or previously used standard treatment (i.e., the comparator), expanding study sample size and potentially broadening the study population for inference (webster-clarke)
 - 3 "types" of initiators of a treatment: new users, direct switchers, and delayed switchers.
- ACNU studies exclude patients with recent exposure to the comparator, sample size is reduced, and inference is limited to new users naive to both treatments
- PNU: reduce bias from confounding by indication and healthy-user bias,
 - Match initiators of the treatment of interest to users of the comparator on time or number of prescriptions since initiating the comparator (treat duration or extent of prior comparator use as a confounder).
 - time-conditional propensity score.

Thank you!