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Background

Large language models (LLM), such as GPT-4(1), have emerged as transformative tools with immense
potential in various fields, including the medical domain. Potentially, LLMs can significantly enhance
clinical decision-making as they have the capacity to process and analyze vast amounts of medical data,
including research papers, clinical guidelines, electronic health records, and patient histories. By
synthesizing this information, LLMs can provide clinicians with up-to-date, evidence-based insights and
recommendations, aiding in accurate diagnoses and treatment plans. This can lead to improved patient
outcomes, reduced errors, and more efficient healthcare delivery.

In this work, we try to address a very pressing need of the OHDSI community: the scalability of the
electronic phenotyping task, a cornerstone of almost every single study carried out by the community.
Electronic phenotyping is the process of using electronic health records (EHRs) and other digital health
data to identify and classify patient phenotypes. It involves analyzing structured and unstructured data
through rule-based approaches, machine learning techniques, natural language processing (NLP), and
hybrid methods. Rule-based approaches use predefined algorithms, while machine learning employs
models trained on labeled datasets to predict phenotypes. In the OHDSI community we have ATLAS(2)
for rule-based definitions and APHRODITE(3) for machine learning/probabilistic definitions. However, in
order to create a good phenotype definition, a considerable amount of hours are poured into performing
literature reviews and achieving alignment between multiple clinical and domain experts to converge on
a single phenotype definition. This makes phenotyping not scalable in its current approach. While
machine learning approaches have tried to bridge this gap (4,5), they are not widely used in practice.

With the intention to leverage the abstraction capabilities of LLMs, we aim to leave the literature review
and condensation work to the model and have a domain expert assess the output. While this approach is
not high-throughput or is intended to be fully automatic, it would greatly simplify and streamline the
phenotyping task. An additional gap we fill with this study is the need to have domain-specific
benchmarks (phenotyping in this case) to assess LLM performance within the wide variety of potential
medical applications that exist. As shown by Dash et al. (6), there is a need to have fine-grained
assessments of LLMs that go beyond having them answer United States Medical Licensing Examination
(USMLE) questions or solve research benchmarks (7,8).

Methods

We selected 25 target phenotypes compiled from various sources, such as OHDSI Phenotype Phebruary
2022 and 2023, and some provided by our domain-expert reviews. Table 1 shows all definitions. We then
prompted GPT-4 with several different prompts and, based on an internal evaluation, the prompt that
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released the most consistent, and similarly formatted results was: “Provide a computable phenotype
definition for <insert phenotype name here>”.

Table 1. List of phenotypes evaluated.

Inflammatory Bowel Disease

Ulcerative Colitis

Crohn's disease

Rheumatoid Arthritis

Plaque Psoriasis

Lupus

High Blood Pressure

Metastatic Cancer

Anticoagulation

Atopic dermatitis

Sepsis

Hospital Inpatient Stay

Outpatient Visits

Pregnancy

Allergic Reaction to Medication

Depression

Requiring High dose immunosuppression

Acquired Neutropenia

Appendicitis

Parkinson's Disease

Acute Pancreatitis

Anaphylaxis

Acute Hepatic Failure

Idiopathic Inflammatory Myopathies

Dementia

Lastly, we had four domain experts evaluate the computable phenotype definitions generated by GPT-4.
The evaluation was qualitative, as in, we wanted to evaluate if the automatically generated definitions
would be harmful, useful in their present form, or need additional work to be useful. The questions and
possible responses to our reviewers were: “Would this definition misguide somebody with its use?” with
three possible answers: No, Yes, Not completely, and “Is this definition good enough to code a
computable phenotype definition?” with possible answers: Yes, Needs some work, Needs a lot of work,
or Not useful at all. Note that we are not counting the clinical codes produced or the implementation of
such computable definitions, just the usability of what was produced by the LLM. That quantitative work
will be further evaluated in a follow-up analysis.



Results

In table 2 we see the frequency of the responses by our domain-expert reviewers. For question 1 “Would
this definition misguide somebody with its use?” It is an interesting finding that 98% of the responses are
not deemed completely irrelevant to the point of misguiding somebody. However, it is clear that the
evaluators do not think the generated responses are fully useful out of the box, as 73% of them are
labeled as not completely. Only 25% of them are good enough, to their standard to even begin
considering using them.

Table 2. Evaluation counts for each question for the evaluated phenotypes.

Question 1: Would this definition
misguide somebody with its use?

Question 2: Is this definition good enough to code a

computable phenotype definition?

Not Completely 73 Needs a lot of work 68

No 25 Needs some work 27

Yes 2 Not useful at all 4

Yes 1

The response patterns to the second question “Is this definition good enough to code a computable
phenotype definition?” do showcase that these generated responses would still need considerable work
from domain experts to be potentially used. With 68% of them categorized as “needing a lot of work”
and 27% of them needing additional work. It is interesting to note that only four responses were deemed
not a good start for creating a computable definition. However, the grading of these did not overlap
between reviewers, meaning there are clearly different patterns as to how domain-experts see these
generated responses. As we have more than two reviewers, we calculated the Fleiss' Kappa coefficient
(9) for both questions. For question 1 we have a of 0.755, with a p value > 0.0001, meaning there is very
strong agreement between our reviewers. For question 2, the coefficient value is 0.318 with a p-value >
0.0001, which shows that there is fair agreement between reviewers, but far from general consensus.

Conclusion

While LLMs are a very promising technology that can, and will, make advances in the medical domain,
the need to have appropriate benchmarks and evaluations like this one is vital. In the field of electronic
phenotyping, we have shown that while the responses of GPT-4 are mostly coherent, they still need
considerable amounts of work to be useful to create definitions that humans spend large amounts of
time doing. We also showed that even when evaluating, there is considerable variability as to how
phenotype definitions are considered useful and how much work they need, elucidating the need to
have better alignment as a community for this. However, there is promise that LLMs with additional
prompting and instruction tuning (10) for the task at hand, such limitations can be overcome and lead us
steps closer to scalable phenotyping with humans in the loop.
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