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Background 
Synthetic Electronic Health Record (EHR) data is crucial for advancing healthcare applications and 
machine learning models, particularly for researchers without direct access to healthcare 
systems. Although existing methods, like rule-based approaches and generative adversarial 
networks (GANs), generate synthetic data that resembles real-world EHR data, these methods 
often use a tabular format, disregarding temporal dependencies in patient histories and limiting 
data replication. Recently, there has been a growing interest in leveraging GPT for EHR data, 
considering a patient's medical history can be viewed as a document. This enables applications 
like disease progression analysis, population estimation, counterfactual reasoning, and synthetic 
data generation. In this work, we focus on synthetic data generation and demonstrate the 
capability of training a GPT model using a particular patient representation derived from CEHR-
BERT, enabling us to generate patient sequences that can be seamlessly converted to the OMOP 
data format.  
 

 
Figure 1 Overall architecture. The patient representation preserves demographics, visit types and temporal 

intervals between visits. 

Methods 
In Figure 1, we present the architecture for generating synthetic data, assuming the source data 

is in OMOP format. To retain the temporal dependencies, we opted to work directly with time-



series patient sequences instead of converting them to a tabular format using the BOW 

representation. Firstly, we transformed the OMOP data into patient sequences using a particular 

patient representation. Secondly, we trained a generative model to learn the distribution of the 

patient sequences, enabling the generation of new synthetic patient sequences.  

Finally, an OMOP converter was utilized to convert the synthetic patient sequences into the 

OMOP format. Furthermore, an evaluation procedure was developed to assess the similarity 

between the synthetic OMOP and the source OMOP data. 

Patient Representation  
The patient representation (Figure 2) includes demographic information, patient history, and 
temporal dependencies [reference]. It begins with a demographic prompt containing EHR start 
year, age, gender, and race. The sequence comprises visit blocks separated by artificial time 
tokens (ATT) representing different time intervals. Each visit block includes a visit type token to 
indicate the visit type.  

 
Figure 2 Patient representation. The patient representation preserves demographics, visit types and temporal 

intervals between visits. 

GPT Model  
We created a GPT model consisting of 6 standard transformer decoders. The input layer of the 
model utilized concept embedding and trainable positional embedding. When generating a 
patient history, we randomly sampled OMOP person records to generate demographic prompts, 
which served as the input to the GPT model. Using these prompts, the entire patient history was 
generated autoregressively by sampling tokens from the predictive distribution at the final layer. 
 

OMOP Converter 
The patient sequence was reverse engineered to convert it back to the OMOP format, shown in 
Figure 3. The start-year prompt determined the EHR history's beginning, using January 1st as the 
default. Demographic data was stored in the person table, while concepts were transformed into 
condition, drug, and procedure tables. Timestamps were calculated based on the start year and 
the number of days represented by each ATT token. Visits, including their visit type, were inserted 
into the visit table with corresponding dates. Randomness was introduced to the dates by 
sampling a numeric day from a uniform distribution for week, month, and long-term tokens. 



 
Figure 3 OMOP Converter. The OMOP Converter converts the patient sequences back to the OMOP format 

 

Evaluation procedures 
We conceived an evaluation framework consisting of three levels of analyses comparing the 
synthetic OMOP with the original data. At the first level, the evaluation is performed to examine 
the concept distributions for the entire population, subpopulation (female), and specific cohorts. 
On the second level, we compare the co-occurrence of the concepts between the source and 
synthetic datasets, aiming to investigate whether the synthetic captures the correlations 
between concepts. The third level aims to evaluate the model's ability to reproduce machine 
learning prediction tasks and assess its performance. By employing this evaluation framework, 
the similarity between the synthetic OMOP data and the source data could be quantified. 
 

Preliminary Results 
The source patient sequences were generated from the OMOP converted from the EHR data 
from Columbia University Irving Medical Center-New York Presbyterian Hospital, which includes 
3 million unique patients' medical histories including condition, medication, and procedure. The 
concept_id=0 was removed from all domains except for the visit type when constructing the 
patient history. We used a standard GPT model with 16 layers of transformer decoders and 
trained it for 2 epochs on 2 Nvidia 1080 TI GPUs with a context window of 512 tokens and a 
learning rate of 5e-5. We employed different sampling strategies to generate synthetic data 
including top k=100, top k=200, top k=300, top p=95% and top=100%. One million patient 
sequences were generated for each sampling strategy and converted back to synthetic OMOP 
instances.  
 

Level 1 concept distribution comparison 
Figure 4 shows the concept distributions between the source and the synthetic data (generated 
using top p=95%) across different populations and domains. Overall, the source and synthetic 
distributions seem to be in an alignment. In the high frequency regions, concepts tend to land on 
the diagonal line, indicating a good match. On the other hand, the concepts tend to spread out 
more in the low-frequency region. Additionally, there is an interesting cluster of condition 
concepts (first column) in the female population (second row) to the left side of the figure, it 



turned out these were male specific conditions (pancreatic cancer) that were not supposed to be 
generated for the female population. The reason for this is that we have a few female patients 
with male specific conditions in the source data, GPT model seems to have amplified such cases. 
(though the percentage is very low in the synthetic data) 

 
Figure 4 concept distribution comparisons between the source and synthetic data using top p=95% strategy. The 
comparisons are stratified by domain (condition, drug, procedure, and visit) and population (full population, female 

population and hospitalization cohort) at the log scale, where x represents the source concept prevalence and y 
represents the synthetic concept prevalence.  

 

Level 2 co-occurrence comparison 
We calculated the life-time co-occurrence for both source and synthetic data, where each patient 
was only allowed to contribute to the same concept pair once. To obtain a probability distribution, 
the co-occurrence matrix was normalized by its total number of records. We calculated the KL-
divergence between the source and synthetic matrices to estimate the similarity between them. 
The procedure was applied to all synthetic datasets generated using different sampling strategies. 
In addition, we included two baselines, a lower and an upper bound, to better interpret the result. 
The lower bound was obtained by performing the same KL-divergence procedure on two random 
samples drawn from the source data (each consists of 10% of the source data). For upper bound, 
we assumed independence between any pair of concepts in the source data, and generated a 
hypothetical co-occurrence matrix, which was then used to calculate the KL divergence upper 
bound against the source co-occurrence. Figure 5 shows the KL-divergence values for different 
sampling strategies, and clearly, the choice of sampling strategies affects the underlying 



distribution of the synthetic data, it seems that synthetic data produced by top p=95% and top 
k=300 have the most similar co-occurrence matrix to the real one.   

 
Figure 5 KL-divergence calculated between the source and synthetic co-occurrence matrices. Two baselines are 

included to get a lower bound and upper bound. The lower bound was obtained by performing the same KL-
divergence procedure on two random samples drawn from the source data. The upper bound was obtained by 

comparing the source co-occurrence with a hypothetical matrix, where all concepts were assumed to be 
independent of each other.  

 

Level 3 Logistic Regression model performance 
 

Cohort Cohort Definition 

HF 
readmission 

HF patients who have a 30-day all-cause readmission. 
Observation window: 360 days, Prediction windows 30 days 

Hospitalization 

2-year risk of hospitalization starting from the 3rd year since the initial entry into 
the EHR system 

Observation window: 540 days, hold-off window: 180 days, Prediction windows 
720 days 

COPD 
readmission 

COPD  patients who have a 30-day all-cause readmission. 
Observation window: 360 days, Prediction windows 30 days 

Afib ischemic 
stroke 

Afib patients with 1 year risk since the initial diagnosis of afib ischemic stroke 
Observation window: 720 days, Prediction windows 360 day 

CAD CABG 

Patients initially diagnosed with Coronary Arterial Disease (CAD) without any 
prior stent graft that will receive the  Coronary artery bypass surgery (CABG) 

treatment 
Observation window: 720 days, Prediction windows 360 day 

Table 1 Cohorts included for estimating the model performance 



 
We included 5 cohorts in the level 3 evaluation to assess the machine learning capability of the 
synthetic data, and the cohort definitions are provided in Table 1. The cohorts were generated 
for both source and synthetic data. For each cohort, we trained logistic regression using sklearn 
with the default hyperparameters with 85% of the data, and then tested the model with the 
remaining data (15%). We reported prevalence/ROC-AUC/PR-AUC in the Table 2.  
 

Cohort Real data 
Top 

P=95% 
Top 

P=100% 
Top K=100 Top K=200 

TOP 
K=300 

HF 
readmission 

Pre = 25.7 
AUC = 65.7 
PR = 39.3 

Pre = 27.6 
AUC = 69.2 
PR = 45.7 

Pre = 28.4 
AUC = 65.9 
PR = 41.8 

Pre = 30.7 
AUC = 68.1 
PR = 47.8 

Pre = 29.3 
AUC = 54.0 
PR = 32.9 

Pre = 26.5 
AUC = 64.9 
PR = 39.3 

Hospitalization 
Pre = 5.6 

AUC = 75.3 
PR = 19.5 

Pre = 5.2 
AUC = 77.1 
PR = 21.4 

Pre = 7.3 
AUC = 68.3 
PR = 16.5 

Pre = 2.8 
AUC = 87.0 
PR = 22.1 

Pre = 5.2 
AUC = 84.2 
PR = 20.8 

Pre = 6.3 
AUC = 78.7 
PR = 24.6 

COPD 
readmission 

Pre = 34.5 
AUC = 74.2 
PR = 83.8 

Pre = 37.8 
AUC = 76.4 
PR = 84.4 

Pre = 47.2 
AUC = 74.1 
PR = 67.2 

Pre = 26.4 
AUC = 75.9 
PR = 90.3 

Pre = 28.3 
AUC = 70.1 
PR = 82.8 

Pre = 34.5 
AUC = 68.8 
PR = 80.2 

Afib ischemic 
stroke 

Pre = 8.7 
AUC = 84.0 
PR = 48.5 

Pre = 10.2 
AUC = 78.9 
PR = 41.2 

Pre = 10.4 
AUC = 70.7 
PR = 39.1 

Pre = 16.6 
AUC = 77.1 
PR = 50.5 

Pre = 15.8 
AUC =68.9 
PR = 36.6 

Pre = 10.8 
AUC = 76.8 
PR = 38.5 

CAD CABG 
Pre = 7.1 

AUC = 88.4 
PR = 55.9 

Pre = 4.1 
AUC = 81.5 
PR = 25.2 

Pre = 4.4 
AUC = 52.9 

PR = 4.3 

Pre = 7.2 
AUC = 75.6 
PR = 38.5 

Pre = 4.9 
AUC = 73.5 
PR = 24.3 

Pre = 4.0 
AUC = 79.0 
PR = 24.1 

Table 2 Cohorts prevalence and model performance 
 
Table 2 shows a similar pattern as the level 2 comparison, where the sampling strategies lead to 
different prevalence and model performance. Encouragingly, the prevalence and model 
performance of the five cohorts were successfully replicated by one of the sampling strategies. 
Notably, top p=95% seems to be the best choice for hospitalization, COPD readmission, and afib 
ischemic stroke, it also has the second-best performance for hf readmission right behind top 
k=300. As for CAD CABG, top K=100 is the only one that comes close to the metrics associated 
with real cohort, all the other sampling strategies could not even replicate the prevalence. This 
suggests that we might need to adjust the sampling strategies depending on the cohorts of 
interest.  

 
Conclusion 
To our knowledge, this is the first attempt to utilize GPT for generating time-series EHR data. Our 
main contribution lies in the design of a patient representation that captures temporal 
dependencies among token types, enabling GPT to generate realistic patient sequences. 
Moreover, this representation allows for easy conversion back to the OMOP format. Our 
comprehensive evaluation procedures showed that the synthetic data preserved the underlying 
characteristics of the real patient population. 
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