

Generating Synthetic Electronic Health Records in OMOP using GPT

Chao Pang, Xinzhuo Jiang, Nishanth Parameshwar Pavinkurve, Krishna S. Kalluri, Elise L. Minto, Jason Patterson, Karthik Natarajan Department of Biomedical Informatics Columbia University

Motivations for synthetic EHR data

Machine Learning

- Prediction research
- External validation

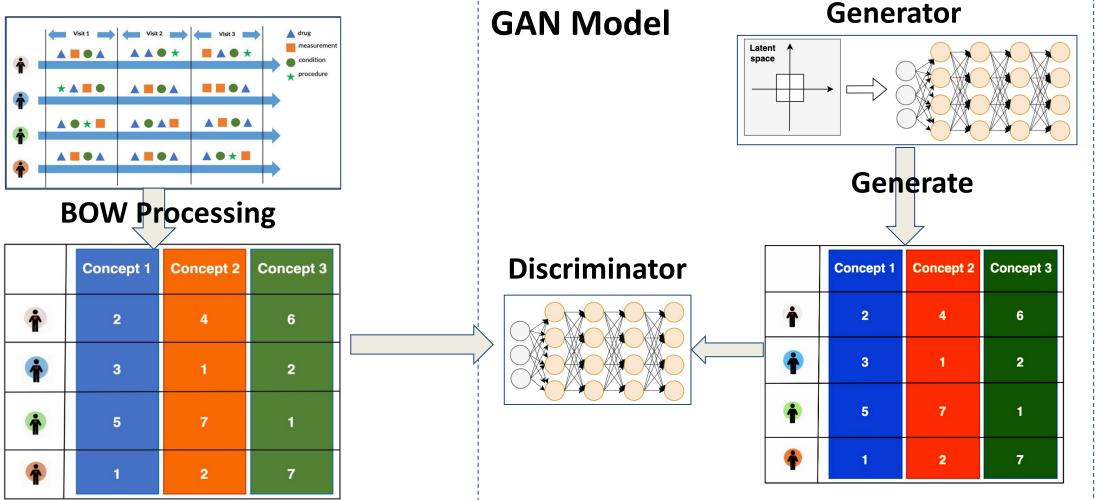
Phenotype algorithm validation Tool development Training and education

Fairness and Bias

- Debiasing the source data
- Counterfactual dataset

Common Approach: Bag of Word (BOW) + GAN

EHR Data



www.ohdsi.org

JOURNAL ARTICLE

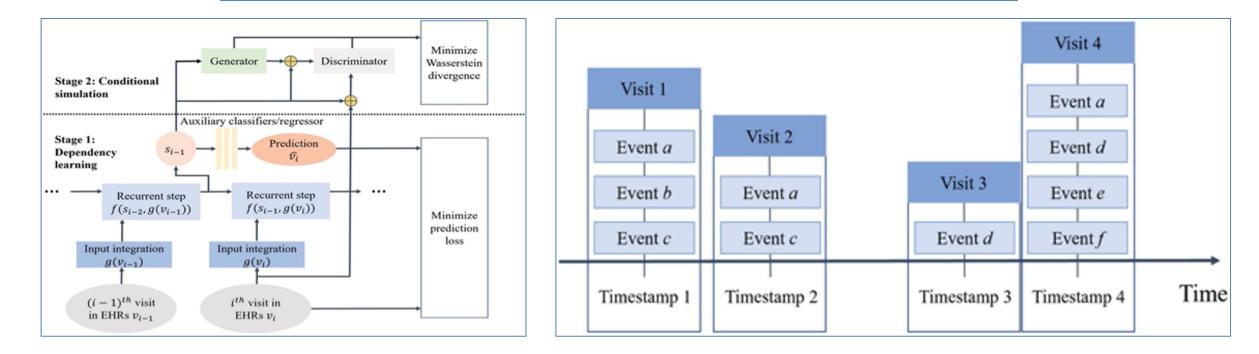
SynTEG: a framework for temporal structured electronic health data simulation @

Ziqi Zhang, Chao Yan 🖾, Thomas A Lasko, Jimeng Sun, Bradley A Malin

Journal of the American Medical Informatics Association, Volume 28, Issue 3, March 2021, Pages 596–604, https://doi.org/10.1093/jamia/ocaa262

Published: 23 November 2020 Article history •

🔎 PDF 📲 Split View 💰 Cite 🔑 Permissions < Share 🔻



JOURNAL ARTICLE

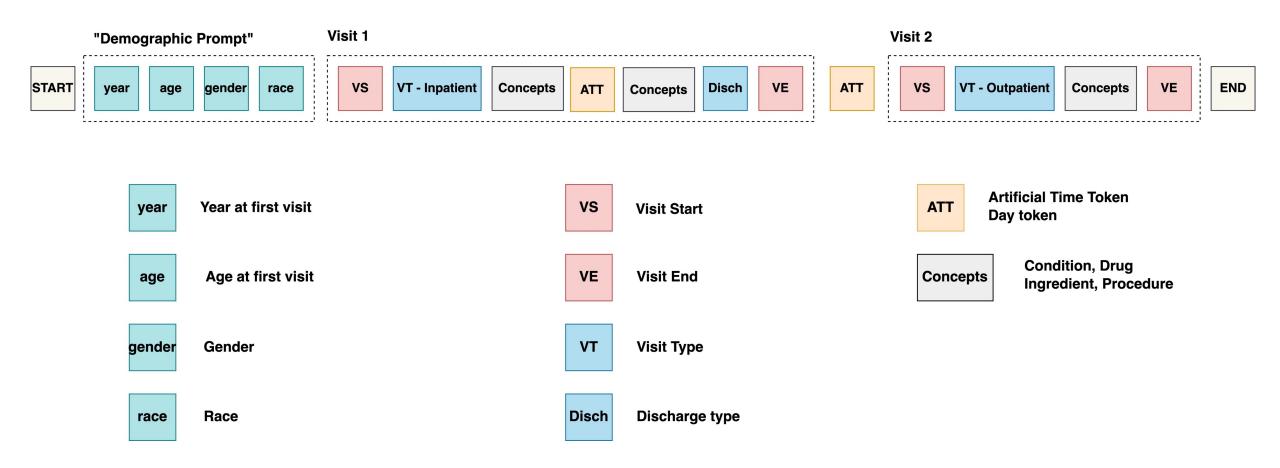
SynTEG: a framework for temporal structured electronic health

All visits assume to end on the same day as

the visit start (Not true for inpatient visits)

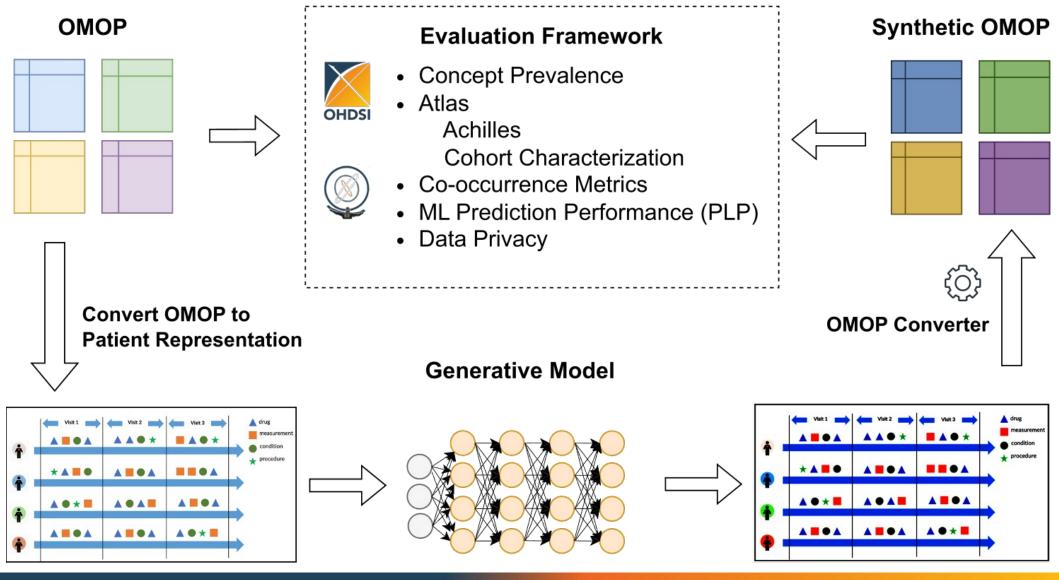
Published: 23 November 2020 Article history

Patient Representation



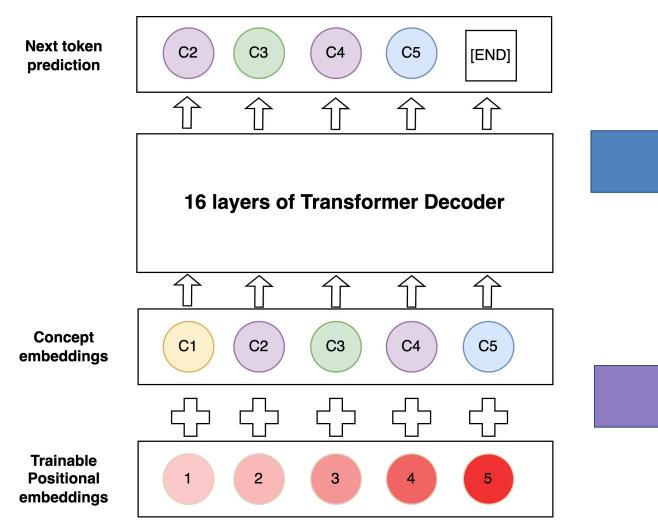
CEHR-BERT https://proceedings.mlr.press/v158/pang21a/pang21a.pdf

Proposed Synthetic Data Framework



www.ohdsi.org

Training a Generative Model



Data Preprocessing

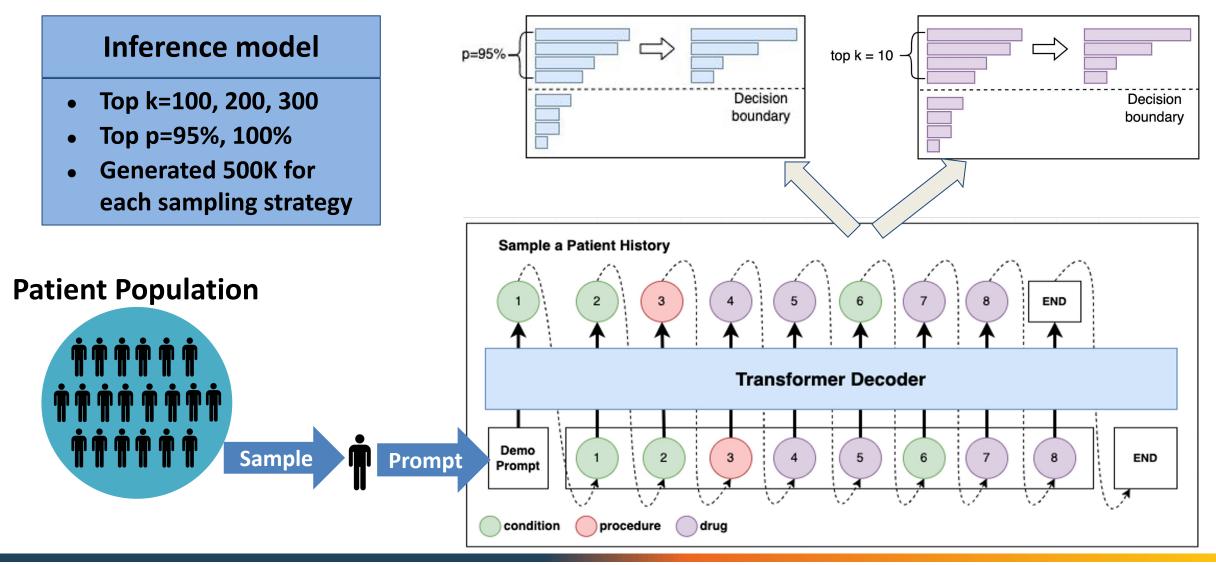
- Condition, drug, procedure
- Context window 512
- Min number of concepts 20
- Truncate the long sequences
- 3 million patients after filtering

Training parameters

- Batch size 32
- Learning rate 1e-5
- Adam optimizer
- 2 epochs
- Save every 10000 steps

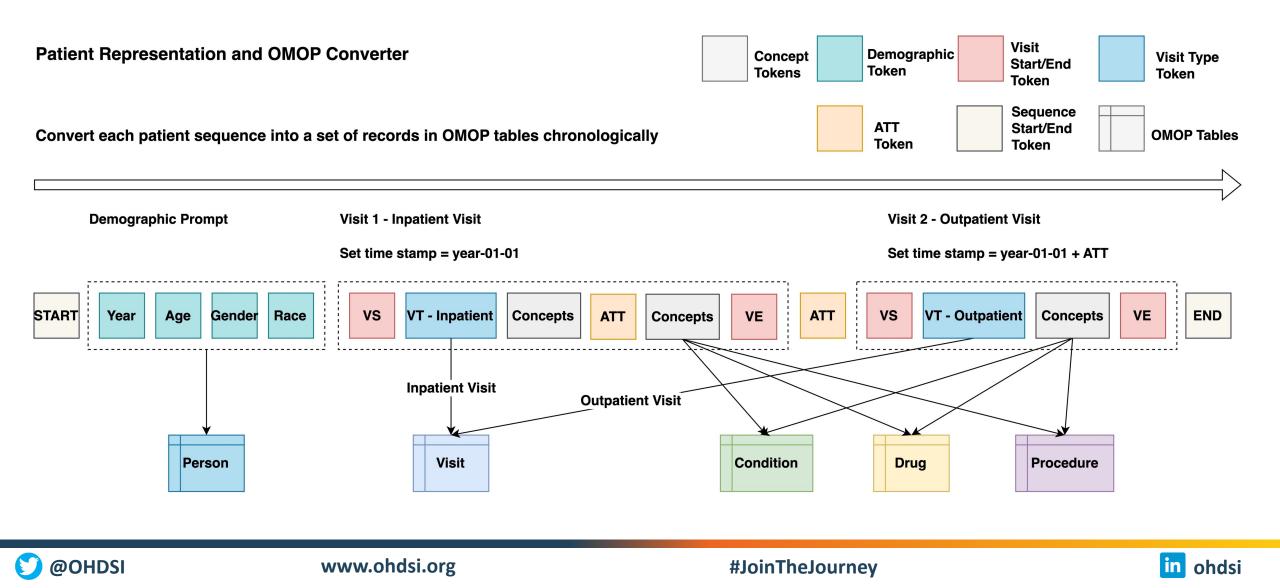
OHDSI @OHDSI

Generate new patient sequences

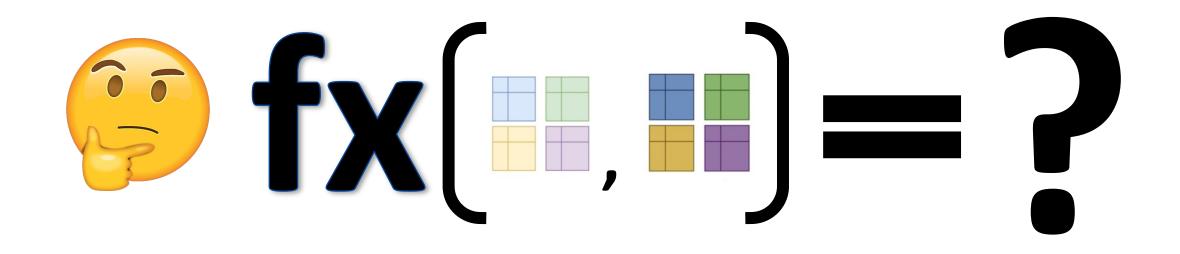


www.ohdsi.org

OMOP Converter



How do you measure the similarity of two OMOP instances?

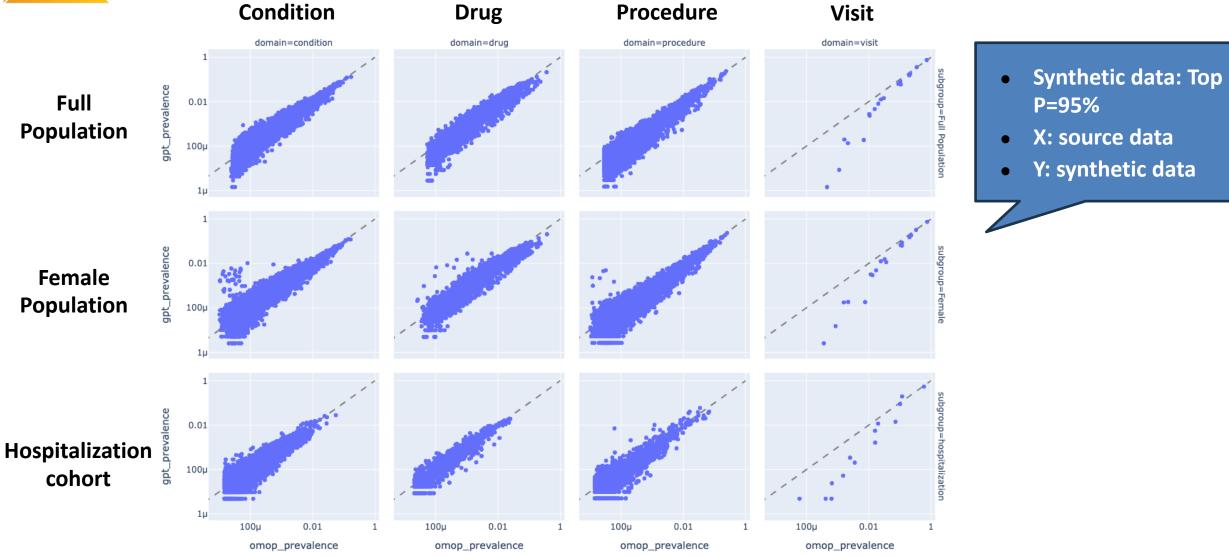


www.ohdsi.org

Evaluation framework

- Level 1: Concept distributions at the full population, subgroups, cohorts. Marginal distribution e.g. P(a; group)
- Level 2: Similarity of co-occurrence matrices at the full population. Conditional distribution e.g. P(a|b)

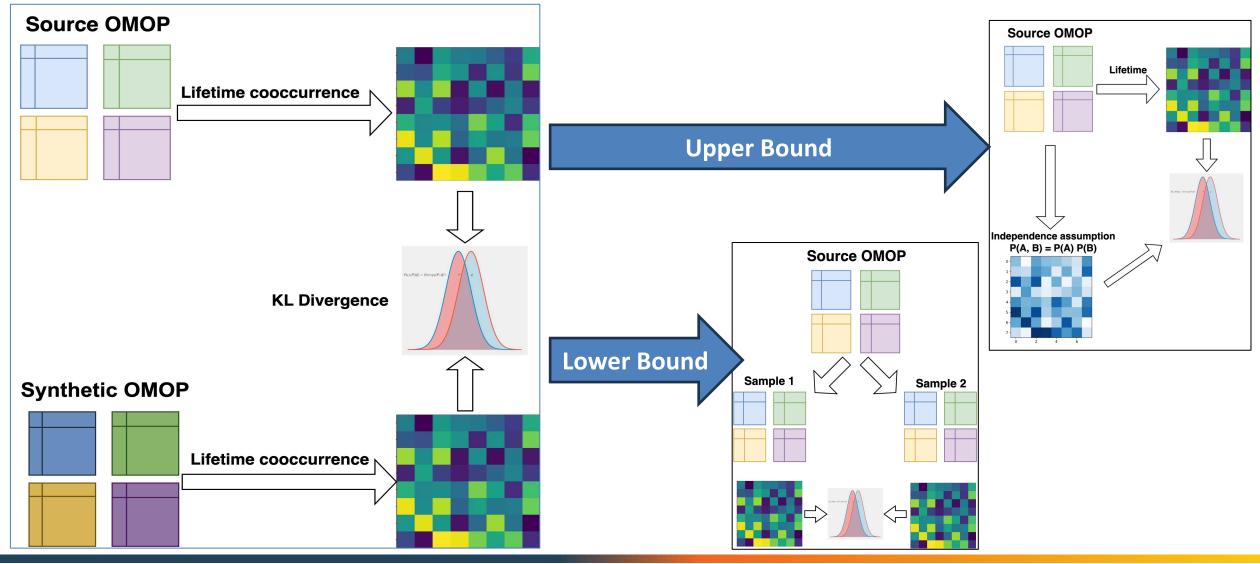
Level 3: Logistic regression performance on synthetic cohorts.
Proxy for joint distribution e.g. P(a, b, c, d; group)



@OHDSI

www.ohdsi.org

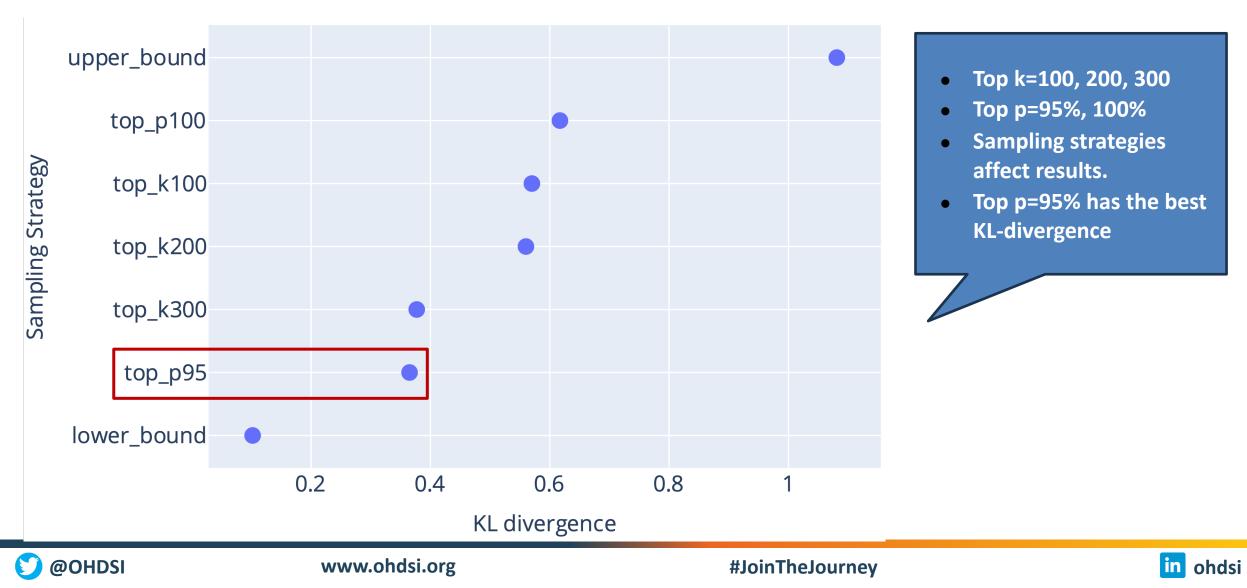
Level 2: Similarity of co-occurrence matrices



💟 @OHDSI

www.ohdsi.org

Level 2: Similarity of co-occurrence matrices



Level 3: Logistic Regression model performance

	Cohort Definition					
HF readmission	HF patients who have a 30-day all-cause readmission. Observation window: 360 days, Prediction windows 30 days					
Hospitalization	2-year risk of hospitalization starting from the 3rd year since the initial entry into the system Observation window: 540 days, hold-off window: 180 days, Prediction windows 720 d					
COPD readmission	COPD patients who have a 30-day all-cause readmission. Observation window: 360 days, Prediction windows 30 days					
Afib ischemic stroke	Afib patients with 1 year risk since the initial diagnosis of afib ischemic stroke Observation window: 720 days, Prediction windows 360 day					
CAD CABG	Patients initially diagnosed with Coronary Arterial Disease (CAD) without any prior stent graft that will receive the Coronary artery bypass surgery (CABG) treatment Observation window: 720 days, Prediction windows 360 day					
@OHDSI	www.ohdsi.org	#JoinTheJourney	in ohd			

Level 3: Logistic Regression model performance

	Real data	Top P=95%	Top P=100%	Тор К=100	Тор К=200	TOP K=300
HF readmission	Pre = 25.7	Pre = 27.6	Pre = 28.4	Pre = 30.7	Pre = 29.3	Pre = 26.5
	AUC = 65.7	AUC = 69.2	AUC = 65.9	AUC = 68.1	AUC = 54.0	AUC = 64.9
	PR = 39.3	PR = 45.7	PR = 41.8	PR = 47.8	PR = 32.9	PR = 39.3
Hospitalization	Pre = 5.6	Pre = 5.2	Pre = 7.3	Pre = 2.8	Pre = 5.2	Pre = 6.3
	AUC = 75.3	AUC = 77.1	AUC = 68.3	AUC = 87.0	AUC = 84.2	AUC = 78.7
	PR = 19.5	PR = 21.4	PR = 16.5	PR = 22.1	PR = 20.8	PR = 24.6
COPD readmission	Pre = 34.5	Pre = 37.8	Pre = 47.2	Pre = 26.4	Pre = 28.3	Pre = 34.5
	AUC = 74.2	AUC = 76.4	AUC = 74.1	AUC = 75.9	AUC = 70.1	AUC = 68.8
	PR = 83.8	PR = 84.4	PR = 67.2	PR = 90.3	PR = 82.8	PR = 80.2
Afib ischemic stroke	Pre = 8.7	Pre = 10.2	Pre = 10.4	Pre = 16.6	Pre = 15.8	Pre = 10.8
	AUC = 84.0	AUC = 78.9	AUC = 70.7	AUC = 77.1	AUC =68.9	AUC = 76.8
	PR = 48.5	PR = 41.2	PR = 39.1	PR = 50.5	PR = 36.6	PR = 38.5
CAD CABG	Pre = 7.1	Pre = 4.1	Pre = 4.4	Pre = 7.2	Pre = 4.9	Pre = 4.0
	AUC = 88.4	AUC = 81.5	AUC = 52.9	AUC = 75.6	AUC = 73.5	AUC = 79.0
	PR = 55.9	PR = 25.2	PR = 4.3	PR = 38.5	PR = 24.3	PR = 24.1

Privacy Evaluation

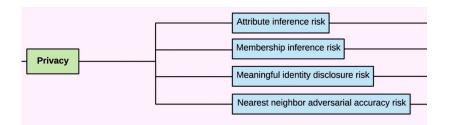
- Membership inference risk: sequence alignment between synthetic and real datasets
- Attribute inference risk: infer the sensitive attributes

Article Open access Published: 09 December 2022

A Multifaceted benchmarking of synthetic electronic health record generation models

<u>Chao Yan, Yao Yan, Zhiyu Wan, Ziqi Zhang, Larsson Omberg, Justin Guinney, Sean D. Mooney</u> <u>Bradley A. Malin</u>

Nature Communications 13, Article number: 7609 (2022) Cite this article



Conclusion

- First framework generated longitudinal synthetic EHR data using OMOP CDM.
- Designed an innovative **patient representation**, which allowed the reconstruction of patient medical timeline without loss of temporal information.
- <u>Comprehensive evaluation procedures</u> showed that the synthetic data preserved the underlying characteristics of the real patient population.

Acknowledgement

Team

Xinzhuo (Zoey) Jiang Nishanth Parameshwar Pavinkurve Krishna S. Kalluri Elise L. Minto Jason Patterson Karthik Natarajan

OHDSI (APOLLO) Martijn Schuemie Yong Chen **Egill Fridgeirsson** Chungsoo Kim Jenna Reps Marc Suchard Xiaoyu Wang

DBMI George Hripcsak Lingying Zhang Harry Reyes Tara Anand Maura Beaton Nripendra Acharya

<u>Grants</u>

This project is partially supported by 5U01TR002062 and 5U2COD023196

