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Background 

Patient-level prediction can help personalize medical treatment.  Websites such as MDCalc 
(www.mdcalc.com) provide an easy way to implement various prediction models using online forms.  Each 
model on the website is often a simple score-based model with 5-15 predictors.  However, there is often 
little overlap in the predictors used across models except basic predictors such as age and sex.  For 
example, CHA2DS2-VASc[1], HAS-BLED[2], ORBIT[3], Dual Antiplatelet Therapy (DAPT) score[4], Wells’ 
criteria for pulmonary embolism [5] and APACHE II score [6] all contain less than 15 predictors individually, 
but to apply all six models would require 40 predictors.  Three of these models are for a related prediction 
task.  If hundreds of simple models were independently trained, it is likely that hundreds or thousands of 
predictors would be required if a patient wanted to know their risk for all outcomes.  This prompts the 
question: Is it possible to accurately predict many outcomes using a constrained number of universally 
informative predictors?  If so, a website could be created that asks users to fill out a single form specifying 
the patient’s values to the constrained number of predictors and the website would return personalized 
predictions for hundreds or thousands of outcomes. 

In this paper we propose a novel methodology for identifying a constrained number of predictors and 
then fit models using the constrained predictors to compare performance of these models to the worst-
case scenario (models with age and sex only predictors) and best-case scenario (no constraint on the 
number of candidate predictors).  

Methods 

OMOP CDM Databases 

In this study we used eight databases mapped to the OMOP CDM, see Appendix A Table 1.  Three 
databases were used to learn the constrained set of predictors and develop models using these predictors, 
three databases were used to just learn the predictors and two databases were used to just develop the 
models using the predictors.  The model development only databases are a fair test of whether the 
predictors, learned on different data, do well in predicting the outcomes of interest. 

Finding a constrained set of candidate predictors 

We identified OMOP drug or condition concepts (concept_ids) that are associated with many incident 
outcomes across many target populations. We calculated the standardized mean difference (SMD) [7] of 
how frequently a medical concept was recorded in the year prior to index (target population start date) 
for patients in a target population who develop the outcome within 1-year vs patients in a target 
population who did not develop the outcome within 1-year. This was done across 65,664 combinations of 
64 target cohorts for different new drug users, 171 outcomes and 6 databases (MDCR, MDCD, CCAE, 



 

 
 

JMDC, Germany and Australia).  We then aggregated the SMD values by counting how often the SMD was 
greater than 0.1 (“#-SMD-significant”) and ordered the medical concepts by decreasing value of #-SMD-
significant.  A clinician then reviewed the list of medical concepts starting at the top, to identify concepts 
that corresponded to specific medical concepts and annotated the document stating the broad medical 
category.  The top 1500 concepts were reviewed. We then created phenotypes for each medical topic 
identified from the top 1500 medical concepts. 

 

Validating the constrained set of candidate predictors 

To validate the constrained set of predictor phenotypes from the top 1500 concepts, we trained models 
to predict first occurrence of five outcomes: seizure, fracture, gastrointestinal (GI) bleed, diarrhea, and 
insomnia within 1 year of initial major depression disorder diagnosis for patients given antidepressant 
treatment within 30 days and observed in the data for at least 1 year prior to index. 

We develop models for the five prediction tasks across five databases (MDCR, MDCD, CCAE, Optum EHR 
and Optum SES) using the PatientLevelPrediction framework [8] with four different model designs: 

1. Constrained LR: Logistic regression with LASSO regularization using the constrained set of 
predictors plus age/sex. 

2. Constrained GBM: Gradient boosting machine using the constrained set of predictors plus 
age/sex. 

3. Worst-case LR: Logistic regression with LASSO regularization using age/sex only predictors. 
4. Best-case LR: Logistic regression with LASSO regularization using all conditions/drugs concept ids 

recorded for at least one patient in the target population prior to index plus age/sex. 

Models were developed using the standard PatientLevelPrediction process [8], with 75% of labelled data 
used to learn the model with 3-fold cross validation to pick the optimal hyper-parameter and 25% of the 
labelled data used to internally validate the models.  In addition, we used cross-database validation to 
externally validate each model for the same task in the other four databases. 

Performance was estimated using area under the receiver operating characteristic curve (AUROC), which 
is a measure that determines how well the models rank patients in order of risk.  A value of 1 means 
perfect ranking and a value of 0.5 means random ranking. 

Note: when predicting seizure (or GI bleed), the constrained predictors contained history of seizure (or 
history of GI bleed).  However, as we predicted first occurrence of the seizure (or GI bleed), it should result 
in the seizure (or GI bleed) predictor having a value of 0 for all patients in the target population for that 
task. 

Results 

The constrained set of candidate predictors 

In total we calculated the #-SMD-significant for a total of 28,741 medical concepts. Ordering the concepts 
by descending value of #-SMD-significant, the top 1500 concepts were reviewed, and 52 medical topics 
were identified. Concepts that were too broad to have a clear medical condition, such as ‘4329041 Pain’, 
were ignored.  However, concepts such as “443784 Vascular disorder” were annotated as “Peripheral 
vascular disease/ coronary artery disease”. We then created phenotypes for each of the 52 identified 
medical topics. Some topics, such as ‘antibiotic use’, were separated into multiple phenotypes 



 

 
 

corresponding to the different antibiotic families.  This resulted in our final set of 67 phenotype predictors 
plus age/sex, see Table 1 in Appendix B. 

Validating the constrained set of candidate predictors 

The internal and external AUROC results for the five prediction tasks per model design are displayed in 
figure 1.  The constrained LR and GBM models performed similarly across the prediction tasks.  For the 
outcomes: seizure, fracture and gastrointestinal bleed, the constrained models performed almost as well 
as the best-case LR that was able to select from thousands of candidate predictors.  For diarrhea the best-
case LR consistently achieved a higher AUROC than the constrained models but the constrained models’ 
AUROCs were closer to the best-case LR AUROCs compared to the worst-case LR AUROCs.  For insomnia, 
the constrained models performed midway between the base-case and worst-case LRs’ AUROCs.  
However, insomnia was also the hardest outcome to predict as the best-case LRs’ performances were 
between 0.6-0.7 AUROC. On average, the constrained LR/GBM models had a 4%/3.5% decrease in AUROC 
compared to the best-case LR across the validations and tasks investigated.   

 
Figure 1. Internal and external AUROC performance across five prediction tasks for the constrained LR, constrained GBM, 
best-case LR and worst-case LR. The x-axis is the development database, the facet-grid columns are the external validation 
databases, and the facet-grid rows are the prediction tasks. 

 

Conclusion 

We propose a novel method to identify a constrained set of predictors that can be used to predict multiple 
outcomes accurately.  Our results show that models developed using a constrained number of predictors 
(~67 + age/sex) shared across prediction tasks can result in models that, in most cases, perform similarly 



 

 
 

to models trained using thousands of candidate predictors.  The results are promising and suggest it may 
be possible to develop a website where users can answer ~67 questions and see their future risks for 
hundreds or thousands of outcomes. 

In this study we selected an arbitrary number of predictors in the constrained predictor set and in future 
work it would be interesting to determine whether there is an optimal number of predictors to use.  In 
addition, there are alternative methods that could be implemented to find the constrained set of 
predictors and future work could investigate alternative methods.  Finally, we only validated the predictor 
set across five outcomes and a single target population. In future work it would be informative to see 
whether the results hold when more prediction tasks and databases are included. 
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APPENDIX A 

 

Country Time 
Period 

Use in Study Name (Abbreviation) Description 



 

 
 

USA 2000-2022 Predictors and 
Model 
development 

The IBM® 
MarketScan® 
Commercial 
Database (CCAE) 

Includes health insurance claims 
across the continuum of care (e.g., 
inpatient, outpatient, outpatient 
pharmacy, carve-out behavioral 
healthcare) as well as enrollment data 
from large employers and health 
plans across the United States who 
provide private healthcare coverage 
for employees, their spouses, and 
dependents. 

USA 2000-2022 Predictors and 
Model 
development 

The IBM® 
MarketScan® 
Medicare 
Supplemental 
Database (MDCR) 

Represents the health services of 
retirees in the United States with 
Medicare supplemental coverage 
through employer-sponsored plans. 

USA  

2006-2022 

Predictors and 
Model 
development 

The IBM® 
MarketScan® Multi-
State Medicaid 
Database (MDCD) 

Reflects the healthcare service use of 
individuals covered by Medicaid 
programs in numerous geographically 
dispersed states. The database 
contains the pooled healthcare 
experience of Medicaid enrollees, 
covered under fee-for-service and 
managed care plans. 

USA 2000-2022 Model 
development 

Optum’s 
Clinformatics® Data 
Mart (Optum CDM) 

Derived from a database of 
administrative health claims for 
members of large commercial and 
Medicare Advantage health plans. 
The database includes data over a 14-
year period (1/2007 through 
12/2021). 

USA 2007-2022 Model 
development 

Optum’s longitudinal 
EHR repository 
(Optum EHR) 

Derived from dozens of healthcare 
provider organizations in the United 
States, that include more 57 
contributing sources and 111K sites of 
care. 

Japan 2005-2022 Predictors JMDC Consists of data from more than 250 
Health Insurance Associations 
covering workers aged less than 75 
and their dependents. JMDC data 
includes data on membership status 
of the insured people and claims data 
provided by insurers under contract. 
Claims data are derived from monthly 
claims issued by clinics, hospitals and 
community pharmacies. The size of 
JMDC population is about 10% of 
people in the whole of Japan. 



 

 
 

Germany 2012-2022 Predictors IQVIA®Disease 
Analyzer Germany 
(Germany) 

A longitudinal patient database 
providing anonymized information 
from continuing physician and patient 
interaction on consultations, 
diagnoses and treatment within 
Primary Care. It contains a data from 
approximately 2,500 office-based 
doctors in Germany. 

Australia 2017-2022 Predictors IQVIA®LPD in 
Australia 
(Australia) 

A longitudinal patient database 
providing anonymized information 
from continuing physician and patient 
interaction on consultations, 
diagnoses and treatment within 
Primary Care. Data are delivered by 
900 office-based doctors in Australia. 

 
APPENDIX B 
Small set of predictors 
 
Table 1- The table containing the constrained set of predictors 

Predictor 
Acetaminophen prescription 

Alcoholism 
Anemia 
Angina 
Antibiotic use (separated by family) 
Antiepileptics (pain) 
Anxiety 
Osteoarthritis 
Aspirin  

Asthma 
Atrial fibrillation 
Hormonal contraceptives 
Cancer 
Acute kidney injury 

Chronic kidney disease 
Congestive heart failure 

Chronic obstructive pulmonary disorder (COPD) 



 

 
 

Coronary artery disease 

Depression 

Diabetes type 1 
Diabetes type 2 

Deep vein thrombosis (DVT) 

Dyspnea 
Edema 
Gastroesophageal reflux disease (GERD) 
Gastrointestinal (GI) bleed  
Heart valve disorder 
Hepatitis 
Hyperlipidemia  
Hypertension 
Hypothyroidism 
Inflammatory bowel disorder (IBD) 
Inpatient visit 
Low back pain 
Neuropathy 
Obesity 
Opioids 
Osteoporosis 
Peripheral vascular disease 
Pneumonia 
Psychotic disorder 
Respiratory failure 
Rheumatoid arthritis 

Seizure 

Sepsis 
Skin ulcer 
Sleep apnea 
Smoking 
Steroids 
Hemorrhagic stroke 



 

 
 

Non-hemorrhagic stroke 
Urinary tract infection (UTI) 

 
 
Existing Models and predictors 
 
CHA2DS2-VASc uses 7 predictors (age, sex, CHF, Hypertension, Stroke/TIA/throcomembolism, Vascilar 
disease) 

HAS-BLED uses 9 (Hypertension, renal disese, liver disease, stroke, prior major bleed, labile INR, age, 
medications that cause bleeds, alcohol useage) 

ORBIT uses 5 (sex, age, bleeding history, GFR, treatment with antiplatelet agents) 

Dual Antiplatelet Therapy (DAPT) score uses 9: age, smoking, diabetes, current MI, prior MI, PACLitaxel-
eluting stend, stend diagmeter, CHF and Vein graft stent) 

Wells’ citeria for pulmonary embolism uses 6: DVT, Likely PE diagnosis, Heart rate, immobilization, pevious 
PE, hemoptysis, malignancy. 

APACHE II score uses 15: history of severe organ failure, age, temperature, arterial pressure, pH, heart 
rate, respiratory rate, sodium, potassium, creatinine, renal failure, hematocrit, white blood count, 
Glasgow coma scale, FiO2 

 

 

 


