Overview of ASSURE
OHDSI Symposium 2023

Kevin Haynes
Justin Bohn
Jenna Reps
Gowtham Rao
Mitch Conover

Global Epidemiology Organization

OFFICE OF THE CHIEF MEDICAL OFFICER
Standardizing regulatory-grade real-world evidence generation

Standardized design
- Indication
- Target
- Outcome
- Comparator
- Time-at-risk

Standardized analytics
- Open community data standards
- Methodological research
- Open-source development

JNJ/Epi standardized data network (OMOP CDM)
- US private claims x3
- US EHR x2
- US Hospital
- US Medicaid
- US Medicare suppl
- Germany EHR
- France EHR
- Australia EHR
- Japan claims

Standardized evidence
- Characterization
 - Disease natural history
 - Treatment utilization
 - Outcome Incidence
 - Time-to-event
- Population-level estimation
 - Comparative cohort
 - Self-controlled case series
- Patient-level prediction

Innovation
Transforming RWE generation from bespoke studies taking months to a **systematic process** taking days, while enabling transparent reproducibility and ensuring **scientific best practices** in causal inference and machine learning

Use cases
Current focus:
- Safety signal detection and evaluation
- Enhanced surveillance

Future opportunities:
- Comparative effectiveness
- Disease interception

Results delivered in 2023
- 23 Requests
- Impact on regulatory decision making
Where does ASSURE fit into the life of a safety signal?

- Early awareness of signals enables preparation and validation of input specifications
- Standardization enables evidence generation within a short timeline

Signal Detection
- Safety data
- Safety Observation

Signal Triage
- Identifying signals and priority

Validation
- Validation of Signal
- No: Closed - Not Validated
- Yes: Evaluation of Signal

Final Assessment
- Positive Findings: Safety Issue Confirmed
- Negative or Insufficient Information: Safety Issue Not Confirmed

Standardized inputs

Standardized analytics

Standardized databases

Standardized results
ASSURE Analyses: Inputs and Outputs

- 164 Janssen products
- 935 alternate treatments
- 39 treatment indications
- 45 outcome events
1. Treatment/Comparator/Indication/Outcome
 • Comparator Selection Tool
2. Phenotype Development
 • Disease Advisory Board
3. Analytic Design and Implementation
 • Negative Control Selection
 • Time at Risk Selection
4. Result Interpretation
 • Shiny Dashboard
5. Documentation and Communication
 • Standardized Output

A Day in the Life of the ASSURE Team
Give me a “T”; Give me a “C”; Give me an “I”; Give me an “O”
What’s that spell… “Strategus!”

tcis <- list()
 list(
 targetId = 13771,
 comparatorId = 13774,
 indicationId = NULL,
 genderConceptIds = c(8507, 8532), # use valid
 minAge = 18, # Age 18+. Can be NULL
 maxAge = NULL, # No max age. Can be NULL
 excludedCovariateConceptIds = c(1154029,
 1103640)
)

scctsTi <- list(
 list(
 targetId = 13771,
 indicationId = NULL, # NO INDICATION REQUIRED
 genderConceptIds = c(8507, 8532), # use valid
 minAge = 18, # Age 18+. Can be NULL
 maxAge = NULL # No max age. Can be NULL
)
)

outcomes <- tibble(
 cohortId = c(12308),
 cleanwindow = c(90)
)

negativeConceptSetId <- 5749
timeAtRisks <- tibble(
 label = c("on-treatment"),
 riskwindowStart = c(1),
 startAnchor = c("cohort start"),
 riskwindowEnd = c(0),
 endAnchor = c("cohort end"),
)

Try to avoid intent-to-treat TARs for SCCS:
scctsTimeAtRisks <- tibble(
 label = c("on-treatment"),
 riskwindowStart = c(1),
 startAnchor = c("cohort start"),
 riskwindowEnd = c(0),
 endAnchor = c("cohort end"),
)

Try to use fixed-time TARs for PLP:
plpTimeAtRisks <- tibble(
 riskwindowStart = c(1),
 startAnchor = c("cohort start"),
 riskwindowEnd = c(365),
 endAnchor = c("cohort start"),
)

studyStartDate <- "" # YYYYMMDD
studyEndDate <- "" # YYYYMMDD