Lightning Talks #1

Moderator: Davera Gabriel

Mapping of Critical Care EHR Flowsheet data to OMOP CDM via SSSOM

A Simple Standard for Sharing Ontology Mappings Presenter: Polina Talapova, MD, PhD

• Prologue

Challenge [1]

sciforce

Various Types of Critical / Intensive Care EHR Flowsheets

- Vital Signs
- Neurological Assessment
- Respiratory Assessment
- Cardiac Assessment
- Renal Assessment
- Intake and Output

- Gastrointestinal Assessment
- Nutritional Assessment
- Wound Care
- Pain Assessment
- Nursing

Semantic Domains Measurements Observations Procedures Conditions Drugs Devices

Challenge [2]

Health Data Mappings:

- Costly & use-case specific
- Essential for algorithm development and analytics
- Requires training & healthcare expertise

Open-Source Mappings:

- Lacking documentation & metadata
- Can lead to data inconsistencies

Adoption Challenges:

• Complicated by varied data sharing approaches

The OMOP Vocabularies, akin to a living organism, thrive with diligent care and stands to benefit from enhancements in areas such as:

- maintenance
- provenance
- precision
- mapping justification

•Solution [1]: Generate SSSOM Metadata

•

•Solution [2]: Use MAPPING_METADATA table

| CDM Field | Datatype| Required |

mapping_concept_id	I	integer	I	Yes
confidence	I	float	I	Yes
predicate_id	I	varchar	I	Yes
mapping_justification	I	varchar	I	Yes
mapping_provider	I	varchar	Ι	Yes
author_id	I	int	I	Yes
author_label	I	int	I	Yes
reviewer_id	I	int	Ι	Yes
reviewer_label	I	int	Ι	Yes
mapping_tool	I	varchar	Ι	No
<pre>mapping_tool_version</pre>	I	varchar	Ι	No
subject_category	I	varchar	Ι	No
<pre>subject_type</pre>	I	varchar	I	No

•Solution [3]: Automation

•Needs [1]: Integration with OHDSI tools

•Needs [2]: Community Contribution

• Visit our poster #501!

sciforce

SSSOM

SIMPLE STANDARD FOR SHARING ONTOLOGY MAPPINGS

12

Paving the way to estimate dose in OMOP CDM for Drug Utilisation Studies in DARWIN EU®

Theresa Burkard, PhD Health Data Science Group – University of Oxford, UK

OHDSI US symposium - East Brunswick, USA October 20, 2023

Is drug dosing valuable for pharmacoepidemiology studies?

YES

- as an inclusion criterion
- time trends of dosing
- high versus low dose

Background

WHOCC - ATC/DDD Index

Our aims were

- to introduce a uniform approach to develop dose formulas
- to validate suggested dose formulas

Objectives

- to introduce a uniform approach to develop dose formulas
- to validate suggested dose formulas

Drug strength patterns

31 patterns with clinically relevant units

Fixed amount formulation patterns e.g. pills, some injections, some inhalers

Time based formulation patterns e.g. patches, extended release tablets

Concentration formulation patterns

e.g. mainly oral / injectable / inhalable solutions

BOTNAR

Examples of Concentration formulation patterns

e.g. mainly oral / injectable / inhalable solutions

DRUG STRENGTH TABLE

Concept name of drug concept id	Amount	Numerator	Concept name of Numerator unit	Denominator	Concept name of Denominator unit
2 ML ibuprofen <mark>10 MG/ML</mark> Injection [Neoprofen]	NA	20	milligram	2	milliliter
itraconazole 10 MG/ML Oral Solution [Sporanox]	NA	10	milligram	NA	milliliter
		Patterns			

Drug strength patterns

Daily dose formulas (to be calculated per pattern):

Numerator value * quantity {drug exposure table}

duration {drug exposure table}

clinical review in CPRD AURUM/ GOLD (UK), IPCI (NL), **PharMetrics®** Plus for Academics (US)

pattern name	Oral route	Injectable route	Inhalable route
milliequivalent per milliliter	NA	NA	NA
milliequivalent per milliliter missing denominator	YES	NO	NA
milligram per actuation	NA	YES	YES
milligram per actuation missing denominator	YES	NO	YES
milligram per milligram	NO	NO	NO
milligram per milligram missing denominator	YES	NO	NO
milligram per milliliter	YES	YES	YES
milligram per milliliter missing denominator	YES	YES	YES
milliliter per milliliter	YES	YES	NA
milliliter per milliliter missing denominator	YES	NO	NA

Route through dose form: Poster 30 today: 4:15 – 5 pm Sunday: noon – 1 pm

We estimated doses from 5 different ingredients in 5 different databases and compared them with the WHO Daily Dose

Ingredient list:

Concept Name	WHO DDD	Unit	Administration Route
furosemide	40 40	milligram milligram	oral injectable
tiotropium	10 5	microgram microgram	inhalable (powder) inhalable (solution)
metformin	2	gram	oral
enoxaparin	2	1000 IU	injectable
salmeterol	0.1	milligram	inhalable
· · · · · · · · · · · · · · · ·			

WHO : World Health Organisation DDD : Dispensed Daily Dose IU : international unit

Dose finding and validation: Poster 502 today: 2:45 – 3:30 pm Sunday: noon – 1 pm

	Unit (%), DD (median, IQR)	עם (mealan, IQR)	טט (meaian, iQK)
IQVIA Germany N = 1'375'495	[mg]: 93.3%, 40 mg (40-40) NA : 6.7%	oral and [mg]: 92.6%, 40 mg (40-40) inj. and [mg]: 0.6%, 40 mg (39-40) NA: 6.7%	"mg" [fixed] and oral: 92.3%, 40 mg (40-40) "mg/ml" [conc.] and oral: 0.3%, 10 mg (10-10) "mg/ml" [conc.] and inj.: 0.6%, 40 mg (39-40) NA : 6.7%
IPCI (NL) N = 2'694'879	[mg]: 99.8%, 40 mg (20-40) NA : 0.2%	oral and [mg]: 99.7%, 40 mg (20-40) inj. and [mg]: 0.2%, 1 mg (2-20) NA : 0.2%	<pre>"mg" [fixed] and oral: 99.6%, 40 mg (20-40) "mg/ml*" [conc.] and oral: 0.1%, 0 mg (0-0) "mg/ml" [conc.] and oral: 0.0%, 20 mg (10-20) "mg/ml" [conc.] and inj.: 0.1%, 1 mg (2-20) "mg/ml*" [conc.] and inj.: 0.0%, 0 mg (0-0) NA : 0.2%</pre>
PharMetrics® Plus for Academics (US) N = 4'561'608	[mg] : 100%, 40 mg (20-40)	oral and [mg]: 93.3%, 40 mg (20-40) inj. and [mg]: 6.7%, 40 mg (20-80)	<pre>"mg" [fixed] and oral: 93.1%, 40 mg (20-40) "mg/ml*" [conc.] and oral: 0.2%, 20 mg (12-30) "mg" [fixed] and inj.: 3.9%, 40 mg (20-40) "mg/ml" [conc.] and inj.: 2.8%, 80 mg (40-80) "mg/ml*" [conc.] and inj.: 0.0%, 20 mg (10-20)</pre>

	Unit (%), DD (median, IQR)	Route and unit (%) DD (median, IQR)	שט (meaian, iQK)
IQVIA Germany N = 1'375'495	[mg]: 93.3%, 40 mg (40-40) NA : 6.7%	oral and [mg]: 92.6%, 40 mg (40-40) inj. and [mg]: 0.6%, 40 mg (39-40) NA: 6.7%	"mg" [fixed] and oral: 92.3%, 40 mg (40-40) "mg/ml" [conc.] and oral: 0.3%, 10 mg (10-10) "mg/ml" [conc.] and inj.: 0.6%, 40 mg (39-40) NA : 6.7%
IPCI (NL) N = 2'694'879	[mg]: 99.8%, 40 mg (20-40) NA : 0.2%	oral and [mg]: 99.7%, 40 mg (20-40) inj. and [mg]: 0.2%, 1 mg (2-20) NA : 0.2%	<pre>"mg" [fixed] and oral: 99.6%, 40 mg (20-40) "mg/ml*" [conc.] and oral: 0.1%, 0 mg (0-0) "mg/ml" [conc.] and oral: 0.0%, 20 mg (10-20) "mg/ml" [conc.] and inj.: 0.1%, 1 mg (2-20) "mg/ml*" [conc.] and inj.: 0.0%, 0 mg (0-0) NA : 0.2%</pre>
PharMetrics® Plus for Academics (US) N = 4'561'608	[mg] : 100%, 40 mg (20-40)	oral and [mg]: 93.3%, 40 mg (20-40) inj. and [mg]: 6.7%, 40 mg (20-80)	<pre>"mg" [fixed] and oral: 93.1%, 40 mg (20-40) "mg/ml*" [conc.] and oral: 0.2%, 20 mg (12-30) "mg" [fixed] and inj.: 3.9%, 40 mg (20-40) "mg/ml" [conc.] and inj.: 2.8%, 80 mg (40-80) "mg/ml*" [conc.] and inj.: 0.0%, 20 mg (10-20)</pre>

	Unit (%), DD (median, IQR)	Route and unit (%) DD (median, IQR)	Pattern and route (%) DD (median, IQR)
IQVIA Germany N = 1'375'495	[mg]: 93.3%, 40 mg (40-40) NA : 6.7%	oral and [mg]: 92.6%, 40 mg (40-40) inj. and [mg]: 0.6%, 40 mg (39-40) NA: 6.7%	"mg" [fixed] and oral: 92.3%, 40 mg (40-40) "mg/ml" [conc.] and oral: 0.3%, 10 mg (10-10) "mg/ml" [conc.] and inj.: 0.6%, 40 mg (39-40) NA : 6.7%
IPCI (NL) N = 2'694'879	[mg]: 99.8%, 40 mg (20-40) NA : 0.2%	oral and [mg]: 99.7%, 40 mg (20-40) inj. and [mg]: 0.2%, 1 mg (2-20) NA : 0.2%	<pre>"mg" [fixed] and oral : 99.6%, 40 mg (20-40) "mg/ml*" [conc.] and oral: 0.1%, 0 mg (0-0) "mg/ml" [conc.] and oral: 0.0%, 20 mg (10-20) "mg/ml" [conc.] and inj.: 0.1%, 1 mg (2-20) "mg/ml*" [conc.] and inj.: 0.0%, 0 mg (0-0) NA : 0.2%</pre>
PharMetrics® Plus for Academics (US) N = 4'561'608	[mg] : 100%, 40 mg (20-40)	oral and [mg]: 93.3%, 40 mg (20-40) inj. and [mg]: 6.7%, 40 mg (20-80)	<pre>"mg" [fixed] and oral: 93.1%, 40 mg (20-40) "mg/ml*" [conc.] and oral: 0.2%, 20 mg (12-30) "mg" [fixed] and inj.: 3.9%, 40 mg (20-40) "mg/ml" [conc.] and inj.: 2.8%, 80 mg (40-80) "mg/ml*" [conc.] and inj.: 0.0%, 20 mg (10-20)</pre>

Validation – Tiotropium (WHO DDD: **10 mcg powder inhalable** / 5 mcg solution inhalable)

	Unit (%) DD (median	, IQR)	Route and unit (QR) DD (median, IQI		Pattern and route (%) DD (median, IQR)
IQVIA Germany N = 1'016'219	mg : 87.0%, 0.018 (0.01 NA : 13.0%	inh. and [mg] : -0 Not] : 87.0%, -0.054)	<pre>"mg" [fixed] and inh.: 58.4%, 0.036 (0.018-0.054) "mg/act" [conc.] and inh.: 20.7%, 0.0100 (0.005-0.015) "mg/ml" [conc.] and inh.: 7.8%, 0.000 (0.000-0.000) NA : 13.0%</pre>
IPCI (NL) N = 1'370'631	mg : 100.0% 0.018 (0.00 NA : 0.0%	appl	icable] : 100.0%, -0.018)	<pre>"mg" [fixed] and inh.: 60.7%, 0.018 (0.018-0.18) "mg/act" [conc.] and inh.: 39.3%, 0.005 (0.005-0.005) "mg/act*" [conc.] and inh.: 0.0%, 0.000 (0.000-0.003) NA : 0.0%</pre>
PharMetrics [®] Plus for Academics (US) N = 950'129	mg : 100%, 0.018 (0.01 0.020)] : 100%, -0.020)	<pre>"mg" [fixed] and inh.: 51.7%, 0.018 (0.018-0.18) "mg/act" [conc.] and inh.: 48.3%, 0.020 (0.020 - 0.020)</pre>

Demonstration of a uniform approach towards dose finding

Validation of dose formulas

Demonstration of a uniform approach towards dose finding

Validation of dose formulas

This dose finding process is slow due to extensive clinical reviews.

Major obstacles is the "quantity" field which varies a lot depending on databases and makes it hard to suggest a uniform dose formula

Depending on the setting of the data (hospital, primary care, claims, electronic health record), the dosing estimation worked better or worse for different formulations and routes.

-> Thorough diagnostic investigations are needed before estimating dose in an individual data base.

Conclusion

The dose estimation is available in the DrugUtilisation R Package developed under DARWIN EU

THANK YOU!

Erasmus MC

Marti Catala Sabate Edward Burn Lucia Bellas Kim Lopez Guell Albert Prats Uribe Annika Joedicke

Zaling Mees Mosseveld

Romain Griffier

Christian Reich Jasmine Gratton

Artem Gorbachev Asieh Golozar

Health Data Science Group,

University of Oxford, UK Prof. Dani Prieto-Alhambra

Generating Synthetic Electronic Health Records in OMOP using GPT

Chao Pang, Xinzhuo Jiang, Nishanth Parameshwar Pavinkurve, Krishna S. Kalluri, Elise L. Minto, Jason Patterson, Karthik Natarajan Department of Biomedical Informatics Columbia University

#JoinTheJourney

Motivations for synthetic EHR data

Machine Learning

- Prediction research
- External validation

Phenotype algorithm validation Tool development Training and education

Fairness and Bias

- Debiasing the source data
- Counterfactual dataset

Common Approach: Bag of Word (BOW) + GAN

EHR Data

www.ohdsi.org

#JoinTheJourney

JOURNAL ARTICLE

SynTEG: a framework for temporal structured electronic health data simulation @

Ziqi Zhang, Chao Yan 🖾, Thomas A Lasko, Jimeng Sun, Bradley A Malin

Journal of the American Medical Informatics Association, Volume 28, Issue 3, March 2021, Pages 596–604, https://doi.org/10.1093/jamia/ocaa262

Published: 23 November 2020 Article history •

🔎 PDF 📲 Split View 😘 Cite 🔑 Permissions 📢 Share 🔻

JOURNAL ARTICLE

SynTEG: a framework for temporal structured electronic health

All visits assume to end on the same day as

the visit start (Not true for inpatient visits)

Published: 23 November 2020 Article history

Patient Representation

CEHR-BERT https://proceedings.mlr.press/v158/pang21a/pang21a.pdf

#JoinTheJourney

Proposed Synthetic Data Framework

www.ohdsi.org

#JoinTheJourney

Training a Generative Model

Data Preprocessing

- Condition, drug, procedure
- Context window 512
- Min number of concepts 20
- Truncate the long sequences
- 3 million patients after filtering

Training parameters

- Batch size 32
- Learning rate 1e-5
- Adam optimizer
- 2 epochs
- Save every 10000 steps

💟 @OHDSI

Generate new patient sequences

www.ohdsi.org

#JoinTheJourney

OMOP Converter

How do you measure the similarity of two OMOP instances?

www.ohdsi.org

#JoinTheJourney

Evaluation framework

- Level 1: Concept distributions at the full population, subgroups, cohorts. Marginal distribution e.g. P(a; group)
- Level 2: Similarity of co-occurrence matrices at the full population. Conditional distribution e.g. P(a|b)

Level 3: Logistic regression performance on synthetic cohorts.
 Proxy for joint distribution e.g. P(a, b, c, d; group)

@OHDSI

www.ohdsi.org

#JoinTheJourney

Level 2: Similarity of co-occurrence matrices

💟 @OHDSI

www.ohdsi.org

#JoinTheJourney

Level 2: Similarity of co-occurrence matrices

Level 3: Logistic Regression model performance

	C	Cohort Definition used in CEHR-BERT	
HF readmission	HF pat Observati	ients who have a 30-day all-cause readmission. on window: 360 days, Prediction windows 30 days	
Hospitalization	2-year risk of hospitalizat Observation window: 54	tion starting from the 3rd year since the initial entry i system 0 days, hold-off window: 180 days, Prediction windo	into the EHR ws 720 days
COPD readmission	COPD pa Observation	atients who have a 30-day all-cause readmission. on window: 360 days, Prediction windows 30 days	
Afib ischemic stroke	Afib patients with Observation	1 year risk since the initial diagnosis of afib ischemic on window: 720 days, Prediction windows 360 day	stroke
CAD CABG	Patients initially diagnosed that will receive Observatio	with Coronary Arterial Disease (CAD) without any prettient to the Coronary artery bypass surgery (CABG) treatme on window: 720 days, Prediction windows 360 day	rior stent graft ent
	www.ohdsi.org	#JoinTheJourney	in ohds

Level 3: Logistic Regression model performance

	Real data	Top P=95%	Top P=100%	Тор К=100	Тор К=200	TOP K=300
HF readmission	Pre = 25.7	Pre = 27.6	Pre = 28.4	Pre = 30.7	Pre = 29.3	Pre = 26.5
	AUC = 65.7	AUC = 69.2	AUC = 65.9	AUC = 68.1	AUC = 54.0	AUC = 61.1
	PR = 39.3	PR = 45.7	PR = 41.8	PR = 47.8	PR = 32.9	PR = 33.8
Hospitalization	Pre = 5.6	Pre = 5.2	Pre = 7.3	Pre = 2.8	Pre = 5.2	Pre = 6.3
	AUC = 75.3	AUC = 77.1	AUC = 68.3	AUC = 87.0	AUC = 84.2	AUC = 78.7
	PR = 19.5	PR = 21.4	PR = 16.5	PR = 22.1	PR = 20.8	PR = 24.6
COPD readmission	Pre = 34.5	Pre = 37.8	Pre = 47.2	Pre = 26.4	Pre = 28.3	Pre = 34.5
	AUC = 74.2	AUC = 76.4	AUC = 74.1	AUC = 75.9	AUC = 70.1	AUC = 68.8
	PR = 83.8	PR = 84.4	PR = 67.2	PR = 90.3	PR = 82.8	PR = 80.2
Afib ischemic stroke	Pre = 8.7	Pre = 10.2	Pre = 10.4	Pre = 16.6	Pre = 15.8	Pre = 10.8
	AUC = 84.0	AUC = 78.9	AUC = 70.7	AUC = 77.1	AUC =68.9	AUC = 76.8
	PR = 48.5	PR = 41.2	PR = 39.1	PR = 50.5	PR = 36.6	PR = 38.5
CAD CABG	Pre = 7.1	Pre = 4.1	Pre = 4.4	Pre = 7.2	Pre = 4.9	Pre = 4.0
	AUC = 88.4	AUC = 81.5	AUC = 52.9	AUC = 75.6	AUC = 73.5	AUC = 79.0
	PR = 55.9	PR = 25.2	PR = 4.3	PR = 38.5	PR = 24.3	PR = 24.1

#JoinTheJourney

Conclusion

- **First deep learning framework** generated longitudinal synthetic EHR data using OMOP CDM.
- Designed an innovative **patient representation**, which allowed the reconstruction of patient medical timeline without loss of temporal information.
- <u>Comprehensive evaluation procedures</u> showed that the synthetic data preserved the underlying characteristics of the real patient population.

Acknowledgement

<u>Team</u>

Xinzhuo (Zoey) Jiang Nishanth Parameshwar Pavinkurve Krishna S. Kalluri Elise L. Minto Jason Patterson Karthik Natarajan

OHDSI (APOLLO) Martijn Schuemie Yong Chen **Egill Fridgeirsson** Chungsoo Kim Jenna Reps Marc Suchard Xiaoyu Wang

Columbia DBMI George Hripcsak Lingying Zhang Harry Reyes Tara Anand Maura Beaton Nripendra Acharya

<u>Grants</u>

This project is partially supported by 5U01TR002062 and 5U2COD023196

#JoinTheJourney

COMPARING EXTRACTED CONCEPTS FROM TEXT TO STRUCTURED CONDITIONS

Tom Seinen PhD Student – Erasmus MC

This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 806968. The JU receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA.

Health Data Science

Context & Problem

Dutch general practitioner database:

- 2.5 million patients
- 8% population of the Netherlands

Unstructured data: free text

- CDM notes table
- **35%** physical space of the **database**
- Potential **information** currently **unused**

Extracting clinical concepts

- Many tools for English
- Not for Dutch
- So.. we created a framework for Dutch

Concept extraction evaluation

- Requires an **annotated dataset** (ground truth)
- None exists for Dutch

Research objective

Possible solution:

- Notes do not exist by themselves
- They often occur together with a condition code

Can we use the **structured codes** for **evaluation**?:

- Surrogate annotations
- Compare the extracted codes with the structured code
- Can we find **similar** or **related concepts** in the **text**?

Methods

Dutch concept extraction framework:

Experimental setup:

- Most frequent conditions in the database
- Take all notes within a 3-day window
- Extract clinical concepts from these notes

Methods

However, the assumption that the text is related to the coded condition might not always hold.

Ground truth is still needed

We annotated a set of 2000 code observations

- 200 different codes
- **Slow**: annotate every clinical concept in the text.
- Fast: does the text describe:
 - A similar concept or
 - A related concept to the recorded condition?
 - Two yes/no questions

Annotate:

Similar to condition? Related to condition?

Methods

Concept similarity

- Pretrained Concept embeddings (SNOMED CT)
 - Numerical representations of the concept
 - Generated using a neural network
- Cosine distance between embeddings = semantic similarity

Is the condition mentioned in the text?

- Find the most similar concept
 - Concept with **maximum** similarity
- When is the concept the same? Or related?
 - Set thresholds on similarity...

The alobal

SNOMED

For **29 million** condition occurrences:

- in 27% we find a similar concept
- in 47% we find a related concept
- in 27% we find only unrelated concepts

Erasmus MC Calmo

Results – evaluate on annotated set

	F1	Recall	Prec.	Acc.
Similar	.61	.47	.99	.73
Related	.76	.63	.94	.70
Similar or related	.88	.80	.98	.81

In 2000 occurrences:

- Found less similar concepts than expected
- More related concepts than expected
- Slightly less similar or related then expected
- If no similar concept was found, then usually a related concept was identified

Conclusion

1. We created a **non-English concept extraction** framework using public resources

- 2. We evaluated the framework using the structure data as surrogate labels
- Limitation: Only tests whether we can extract the information that is expected
- Language agnostic
- 3. Our framework performs relatively well, but it can be improved
- Limitation: Currently uses only SNOMED synonyms
- 4. Most conditions have related or similar concepts in the surrounding text

More info?

Meet me at my poster: 504

Finding a constrained number of predictor phenotypes for multiple outcome prediction

Jenna M Reps, Jenna Wong, Egill A. Fridgeirsson, Chungsoo Kim, Luis H. John, Ross D. Williams, Patrick Ryan

A Team Effort Made This Possible

Motivation

MD CALC

 \equiv

 \leftarrow \rightarrow C \bullet mdcalc.com/calc/801/cha2ds2-vasc-score-atrial-fibrillation-stroke-risk

Aim: Can we find a constrained set of predictors that can be used for many health outcome prediction tasks and lead to good performance?

CHA₂DS₂-VASc Score for Atrial Fibrillation Stroke Risk ☆

Search "QT interval" or "QT" or "EKG"

Calculates stroke risk for patients with atrial fibrillation, possibly better than the CHADS₂ Score.

Ideal output: a website with one form and thousands of models

Methodology

We developed a process to learn conditions/drugs that are generally predictive across many target cohorts and outcomes...

Results: Our constrained predictor set

Predictor	Disorder classification	Predictor	Disorder classification	Predictor	Disorder classificati	r on
Alcoholism	Behavioral	Hormonal contraceptives	Gynecologic	Asthma	Respiratory	
Smoking	Behavioral	Antibiotic use (separated	Infaction	Chronic obstructive		
Anemia	Blood	by family)	Infection	pulmonary disorder	Respiratory	
Osteoarthritis	Bone	Pneumonia	Infection/Respirator	(COPD)		
Osteoporosis	Bone	Fileumonia	у	Dyspnea	Respiratory	
Cancer	Cancer	Sepsis	Infection	Respiratory failure	Respiratory	
Atrial fibrillation	Cardiovascular	Urinary tract infection (UTI)	Infection	Sleep apnea	Respiratory	
Congestive heart failure	Cardiovascular	Hepatitis	Liver	Rheumatoid arthritis	Rheumatolog	IУ
Coronary artery disease	Cardiovascular	Anxiety Depression	Mood Mood	Steroids	Rheumatolog	jy/Pa
Heart valve disorder	Cardiovascular	Psychotic disorder	Mood	Peripheral vascular	Vacaular	
Hyperlipidemia	Cardiovascular	Antiepileptics (pain)	Neurology/Pain	disease	vasculai	
Hypertension	Cardiovascular	Seizure	Neurology	Aspirin	Vascular	
Angina	Cardiovascular	Hemorrhagic stroke	Neurology/Vascular	Deep vein thrombosis	Vascular	
Skin ulcer	Debility	Non-hemorrhagic stroke	Neurology/Vascular	(DVT)	vaooalai	
Diabetes type 1	Endocrine		rtourology, vaooalai	Edema	Vascular	
Diabetes type 2	Endocrine	Acetaminophen	Pain/Infection	Inpatient visit	Inpatient Visit	t
Hypothyroidism	Endocrine	prescription	Dein			
Obesity	Endocrine	Low back pain	Pain Dain (Namala ma	i nese pre	notypes	
Gastroesophageal reflux	CI		Pain/Neurology	are availab	le in the	
disease (GERD)	01	Opioids	Pain		notuno	
Gastrointestinal (GI) bleed	GI	Acute kidney injury	Kidney		enotype	
Inflammatory bowel disorder	GI/Rheumatology	Chronic kidney disease	Kidney	libra	ry	

Results: evaluation of our constrained predictor set

For many prediction tasks we developed four models:

- Logistic regression using >10,000 SNOMED/RxNorm codes plus age/sex (best-case LR)
- Logistic regression using only age/sex predictors (worse-case LR)
- Logistic regression using our 67 predictors plus age/sex (constrained LR)
- Gradient Boosting Machine using our 67 predictors plus age/sex (constrained GBM)

Results for the task of predicting 1-year death after an outpatient visit in 2018

*Charlson – an existing model for this prediction task

What are your risks?

The constrained predictors led to good models.

Try it out yourselves: www.WhatllHappenToMe.org

Predicted Risks	
Outcome	<u>Risk</u> ↓
Coronary artery disease (CAD)	5.42%
arrhythmia, condition, procedure, devise or drug	5.17%
Type 2 Diabetes Mellitus (DM), with no type 1 or secondary DM	2.73%
Heart failure	2.41%
Major depressive disorder, with NO occurrence of certain psychiatric disorder	2.15%
Muscle weakness or injury	2.1%
Ulcerative colitis	2.07%
Atrial Fibrillation	1.95%
Crohns disease	1.84%
Urinary tract infections (UTI)	1.64%