& Penn Medicine r OHDSI

Department of Biostatistics, Epidemiology and Informatics

Synthesizing Evidence for Rare Events:
a Novel Zero-Inflated Bivariate Model to Integrate
Studies with Double-Zero Outcomes

Lu Li, Ph.D. candidate at the University of Pennsylvania &
Advisor: Dr. Yong Chen I\o . )

Joint work with Drs. Lifeng Lin, Haitao Chu, Yong Chen |I
lennCIL

A Computing - Inference + Learning
lab at University of Pennsylvania

2023 OHDSI Symposium




Real-world case study

(ﬁ( Cochrane
y/o? Library

Cochrane Database of Systematic Reviews

Probiotics for the prevention of Clostridium difficile-associated

diarrhea in adults and children (Review)

Goldenberg JZ, Yap C, Lytvyn L, Lo CKF, Beardsley J, Mertz D, Johnston BC

» Explores the potential use of probiotics as a
treatment for Clostridium difficile-associated
diarrhea (CDAD) caused by antibiotic use

» Whether probiotics cause any side effects
when used to prevent CDAD

Analysis 1.24. Comparison 1 Probiotics versus control, Outcome 24 Adverse Events: complete case.
Study or subgroup Experimental Control Risk Ratio Weight Risk Ratio
n/N n/N M-H, Random, 95% CI M-H, Random, 95% CI

Allen 2013 294/1470 284/1471 . 13.09% 1.04[0.9,1.2]
Arvola 1999 [ os61 0/58 Not estimable
Beausoleil 2007 21/44 20/45 —+— 6.6% 1.07[0.68,1.68]
Bravo 2008 3/41 4/45 —_— 1.08% 0.82[0.2,3.46]
Cindoruk 2007 41/62 62/62 + 12.37% 0.66[0.56,0.79]
Duman 2005 3/196 4/180 —_— 1.02% 0.69[0.16,3.04]
Ehrhardt 2016 18/146 12/146 T 3.75% 1.5[0.75,3]
Fominykh 2013 [ os80 0/40 Not estimable
Gao 2010 1/171 2/84 —_— 0.41% 0.25[0.02,2.67]
Hickson 2007 | 0/57 0/56 Not estimable
Imase 2008 1/12 3/7 —_— 0.55% 0.19[0.02,1.53]
Klarin 2008 [ o022 0/22 Not estimable
Koning 2008 15/19 17/19 —+ 10.02% 0.88[0.67,1.17)
Kotowska 2005 | 0/119 0/127 Not estimable
Lonnermark 2010 3/80 3/83 e 0.92% 1.04[0.22,4.99]
McFarland 1995 0/93 12/92 4¢—+— 0.3% 0.04[0,0.66]
Miller 2008a 2/95 4/94 —_— 0.81% 0.49[0.09,2.64]
Miller 2008b 4/156 0/155 + » 0.28% 8.94[0.49,164.71]
Nord 1997 9/11 10/12 —-+ 7.92% 0.98[0.67,1.43]
Ouwehand 2014 14/304 12/144 — 3.36% 0.55[0.26,1.16]
Pozzoni 2012 41/106 35/98 - 8.29% 1.08[0.76,1.55]
Psaradellis 2010 90/216 103/221 + 11.61% 0.89[0.72,1.1]
Ruszczynski 2008 | 0/120 0/120 Not estimable
Safdar 2008 2/23 5/16 — 0.99% 0.28[0.06,1.26]
Selinger 2013 14/117 16/112 —— 3.95% 0.84[0.43,1.63]
Shan 2013 [0/139 0/144 Not estimable
Shimbo 2005 5/18 14/17 — 3.15% 0.34[0.16,0.73]
Siitonen 1990 2/8 3/8 —_— 1% 0.67[0.15,2.98]
Sullivan 2004 [ on8 0/18 Not estimable
Surawicz 1989 [o/116 0/64 Not estimable
Thomas 2001 37/133 52/134 -+ 8.52% 0.72[0.51,1.01]
Wong 2014 [ o076 0/82 Not estimable
Total (95% CI) 4329 3976 ¢ 100% 0.83[0.71,0.97]
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Real-world case study

Analysis 1.24. Comparison 1 Probiotics versus control, Outcome 24 Adverse Events: complete case.

Study or subgroup Experimental Control Risk Ratio Weight Risk Ratio

n/N n/N M-H, Random, 95% CI M-H, Random, 95% CI
Allen 2013 294/1470 284/1471 + 13.09% 1.04[0.9,1.2]
Arvola 1999 0/61 0/58 Not estimable

Double-zero-event stUdy (DZS)
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I Non-event
Should we drop them? B Event
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Bivariate Random Effects Models for Meta-Analysis of Comparative Studies with
Binary Outcomes: Methods for the Absolute Risk Difference and Relative Risk
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Existing approach to incorporate DZS:

Bivariate Generalized Linear Mixed Model (BGLMM)

» A bivariate random effects model that jointly analyzes the risks in treatment
and control groups

it iy
L G
Group (for the i-th study) Treatment Control 1
Number of events v v P(Yio = Yi0,Yi1 = Y1) = H(Pik)y”‘(l — Py) Nk
i1 i0 b
Sample size N;y N;o
Event risk P, P, Limitation:
parameters of DZS similarly to the
Random effects Vi1 Vio interest

other studies
Y, ~ Binomial (N, Pii); g(Pix) = Py + Vi

H
Chu H, Nie L, Chen Y, Huang Y, Sun W. Bivariate random effects models for meta-analysis of comparative studies with binary outcomes: methods for the absolute risk difference :g
and relative risk. Statistical Methods in Medical Research. 2012;21(6):621-633 |||
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@ Should we treat DZS similarly to the other studies?

Assuming an event rate of 1%:
Short answer:

NO EAS AN
HIHE HIHE
Rationale:
" Sample size of siin  ccno e Qi
the studies are e ﬂﬂ% N
i s see0e e e @@@IH\@\
informative MMM
0 O 0 0
57/ 53 527/ 473
Conclusion: 33 L 000 4
110 0.99" ~
We should not treat 0.99110 100 100, 000
all the double zero

studies the same as

V. likely.
the other studies Could happen by chance. ery unlikely
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To differentiate DZS: Zero-Inflated Models

» Zero-inflated models separate observed zeros into two distinct categories.

Voo ~ Binomial (N, P;;), with probability 1 —
ik 0, with probability n

1 — m: at-risk population 7: low-risk population
“at-risk” or “chance” zeros m o 000 2hviv 0000 “structural” zeroes
correspond to a latent group o A """ " P represent individuals who
of individuals who are at risk e @@@,‘H’\@ m ¥y are not susceptible to a
for an event but have a ﬁrﬂ\?\rﬂ\ﬁ specific event, thereby
recorded count of zeros. RN MR ol having no chance of a
positive count.

Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics. 1992;34(1):1-14. % Penn Medicjne



Recap BGLMM: 1
P(Yio =Yio.Yi1 = Y1) = H(Pik)yik(l — Py )Nk Vik

Proposed method

g(Pi) = My + Vi

» Zero-Inflated Bivariate Generalized Linear Mixed Model (ZIBGLMM)

Advantages:
1. No studies are dropped from the analysis.

2. Models population heterogeneity through a data-driven approach.

1 — m: at-risk population r: low-risk population
nr - dad LU U
M diend V| P
FitdE pih 0T
oooooooooooooo @flll\@['lll]@
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Revisit the case study

1§ Cochrane :
o+ Library » 10 of 32 studies are double-zero-event

. . . .
Cochrane Data Analysis 1.24. Comparison 1 Probiotics versus control, Outcome 24 Adverse Events: complete case. Stu d I eS ( DZS ) 3 W I th Sa m p I e S I Ze ra n g I n g fro m
Study or subgroup Experimental Control Risk Ratio Weight Risk Ratio
n/N n/N M-H, Random, 95% CI M-H, Random, 95% CI 1 8 to 1 44 .
Allen 2013 294/1470 284/1471 13.09% 1.04{0.9,1.2)
Arvola 1999 Not estimable . . .
1ot Beausoleil 2007 21/44 20/45 e 6.6% 1.07[0.68,1.68]
Probiotics for tic et - e — w e P Concluded that probiotics reduce the risk of
diarrhea in adults e 41/62 62/62 + 12.37% 0.66[0.56,0.79)
Duman 2005 3/196 4/180 —_— 1.02% 0.69[0.16,3.04] A E b 1 7 0/ .
Ehrhardt 2016 18/146 12/146 —— 3.75% 1.5[0.75,3] y 0.
Fominykh 2013 Not estimable
Goldenberg JZ, Yap C, Lyt 6202010 1171 2/84 _ 0.41% 0.25[0.02,2.67] ° 0
Hickson 2007 Not estimable RR 083 (95 A) Cl 071 tO 097)
Imase 2008 112 3 —_—— 0.55% 0.19[0.02,1.53]
Klarin 2008 Not estimable .
(aing 200 o o 4 w00z womn | P US| ng our propo sed method (Z| BGLMM ):
Kotowska 2005 Not estimable
Lonnermark 2010 3/80 3/83 —— 0.92% 1.04[0.22,4.99)
McFarland 1995 0/93 12/92 4¢—+—— 03% 0.04[0,0.66) [ R R O 70 (9 5% C | O 5 5 to O 88)
Miller 20082 2/95 4/94 . 0.81% 0.49(0.09,2.64] - - -
Miller 2008b 4/156 0/155 —) 0.28% 8.94(0.49,164.71]
Nord 1997 9/11 10/12 -+ 7.92% 0.98[0.67,1.43] 1 .
] s e » Conclusion:
Pozzoni 2012 41/106 35/98 - 8.29% 1.08[0.76,1.55)
Psaradellis 2010 90/216 103/221 + 1161% 0.89[0.72,1.1] . - -
* Including the DZS could potentially result in
Safdar 2008 2/23 5/16 — 0.99% 0.28[0.06,1.26] . .
Selinger 2013 14/117 16/112 — 3.95% 0.84[0.43,1.63] t t th t d ff by I g d g ( O 1 )
Pl B estimates that airrer a large degree (=0U.1).
Shimbo 2005 5/18 14/17 — 3.15% 0.34[0.16,0.73] .
Siitonen 1990 2/8 3/8 —_— 1% 0.67[0.15,2.98] [ U Z I B G L M M 'ﬁ:
Sullivan 2004 Not estimable S I n g O e rS a m O re
Surawicz 1989 Not estimable L] L H
s ot ® - e comprehensive analysis of the available
Wong 2014 Not estimable
Total (95% Cl) 4329 3976 ¢ 100% 0.83[0.71,0.97] d a ta "




Summary

» Zeros in double-zero-event studies (DZS) may arise due to heterogeneity in the

population.

» ZIBGLMM offers a more comprehensive analysis of the available data.

For OHDSI, ZIBGLMM is useful especially for larger network studies

and for studies involving rare events.
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Active Safety S il
‘ ASS U RE Ugi:lvge Reaaﬁv)\,lorrdwlie\;i::::e

Overview of ASSURE
OHDSI Symposium 2023

Kevin Justin Jenna Gowtham Mitch
Haynes Bohn Reps Rao Conover

Global Epidemiology Organization OFFICE OF THE CHIEF MEDICAL OFFICER



ASSURE: Active Safety Surveillance Using Real-world Evidence

Standardizing regulatory-grade real-world evidence generation

Standardized design Standardized analytics Standardized evidence

 Indication 4 e Characterization
« Target '// OHDSWI » Disease natural history

«  Outcome Open community ~ Methodological ~ Open-source « Treatment utilization

Comparator data standards research development » Outcome Incidence

*  Time-at-risk * Time-to-event
JNJ/Epi standardized data network (OMOP CDM) - Population-level estimation

» Comparative cohort

. o Medicare

Medicaid - series
Australia Japan  Patient-level prediction
EHR claims

Transforming RWE generation from bespoke Current focus: « 23 Requests
studies taking months to a systematic +  Safety signal detection and evaluation «  Impact on regulatory decision making
process taking days, while enabling * Enhanced surveillance

transparent reproducibility and ensuring
scientific best practices in causal inference
and machine learning

b4

Future opportunities:
*  Comparative effectiveness
* Disease interception



Where does ASSURE fit into the life of a safety signal?

Identifying signals and
i i riorit i
Signal Detection priority Negative or - gaFETY |SSUE
Insufficient NOT-
Information  cONFIRMED

N

Safety data Final Assessment

Safety Signal Validat Validated /@ Evaluation of
Observation Triage aliaation Signal Signal

Positive
Findings

SAFETY ISSUE

Safety Signal Detection and Management Function CONFIRMED

CLOSED - NOT Safety
VALIDATED decisions

« Early awareness of signals enables preparation and validation of input specifications

« Standardization enables evidence generation within a short timeline

Standardized Standardized Standardized Standardized
inputs analytics databases results

OFFICE OF THE CHIEF MEDICAL OFFICER 15




ASSURE Analyses: Inputs and Outputs

Analysis designer Execution engine Results viewer
ATLAS/CIRCE Cohort Characterization Interactive exploratory
Design interface Treatment pathways (T in 1) interface -
Temporal characterization (I, T, O in S) - Characterization
Incidence (O inT/I, in S) - Estimation
Prevalence (O, Tin |, in S) - ldentification
i ilizati i - Estimation
Analys‘ls p‘arameter Cohort Generation Treatment utilization (T, in S) S it N
selection interface Indication | esults - Prediction
TR AT Population-Level Estimation & study
Subgroup S Absolute effects (O in T1) diagnostics : :
CiEsr e O Comparative effects (O in T1vT2) SeIf—cont.amed Stath.
Phenotype library Designs: CM, SCCS, SCC standardized reporting
Use case: ldentification, Estimation - Specs doc
- Clinical descriptions . — - Study report
- Cohort definitions Pat|ent—leyel P.red|ct|on - Supplemental materials
- Diagnostics - Bas§l|ne risk ‘
= Measurement error = Attnbutable r|Sk
estimates
Data analysis infrastructure 1 Infrastructure j
* 164 Janssen products
~
« 935 alternate treatments
» 39 treatment indications CDM k
* 45 outcome events

H OFFICE OF THE CHIEF MEDICAL OFFICER "- 16



1. Treatment/Comparator/Indication/Outcome

e Comparator Selection Tool A Daj in the
2.Phenotype Development :

 Disease Advisory Board L'Fe OF the
3.Analytic Design and Implementation =~ ASSURE Team

* Negative Control Selection

* Time at Risk Selection
4.Result Interpretation

Shiny Dashboard /
5.Documentation and Communication @

« Standardized Output

H OFFICE OF THE CHIEF MEDICAL OFFICER ‘



tcis < list( 28 negativeConcepthtId <- 5749
Tist( ‘29 timeAtRisks <- tibble(
targetid = 13771, ne «3o label = c("On-treatment™),
comparatorIid = 13774, 31 riskwindowstart = c(1),
indicationId = NULL, 32 sFartgnchor = c("cohort start"),
gendercConceptIds = c(8507, 8532), # use valid 33 riskwindowend = c(0), .
minAge = 18, # Age 18+. Can be NULL 34 endAnchor = c("cohort end”),
maxAge = NULL, # No max age. Can be NULL 35 )
excludedCovariateConceptIds = c(1154029, 36 # Try to avoid intent-to-treat TARs for
1103640 37 sccsTimeAtRisks <- t1bb1e(
) 38 label = c("On-treatment”),
39 riskwindowstart = c(1),
sccsTi <- list( 40 syartgnchor = c("cohort start"),
Tist( 41 riskwindowend = c(0),
targetId = 13771}, 42 endanchor = c("cohort end"),
indicationId = NULL, # NO INDICATION REQUIRED 43 )
gendercConceptIds = c(8507, 8532), # use valid 44 # Try to use fixed-time TARs for PLP:
minAge = 18, # Age 18+. Can be NULL 45 plpTimeAtRisks <- tibble(
maxAge = NULL # No max age. Can be NULL 46 riskwindowstart = c(1), .
) 47 sFartgnchor = c("cohort start"),
48 riskwindowend = c(365),
outcomes <- tibble( 49 endAnchor = c("cohort start"),
cohortid = ¢(12308), 50 ) o
cleanwindow = c(90) 51 studyStartDate <- # YYYYMMDD
) 52 studyeEndDate <- "" # YYYYMMDD

54 ~ # Probably don't change below this Tine

b4

sccgl:
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Patient’s outcomes after endoscopic
retrograde cholangiopancreatography (ERCP)
using reprocessed duodenoscope accessories:
a descriptive study using real-world data

Jessica Mayumi Maruyama
Eduardo Sleiman Beljavskis
Laila Colacoes

Lisandry Aquino

Renata Martins

Sarah Rodrigues

Suellen dos Santos

Julio Cesar Barbour Oliveira L@ P2

BRIDGING PEOPLE AND DATA




1. Background (= pata

ERCP: Significant impact Concerns related to

duodenoscope-related
infections due to
material reprocessing

on management and
prognosis of biliary and
pancreatic diseases

Source: https://www.sages.org/

Study objective using an OMOP CDM harmonized dataset from Brazil:
= To compare the % of readmissions post-ERCP between Single-use (SUG) and Non-

single-use (NSUQG) institutions



2. Methods ?) paTe

Data source: Hospital and Ambulatory Information System from Brazilian \ DATASUS
Administrative Database, mapped to OMOP CDM v 5.4. A deterministic - B SO B
linkage algorithm was developed to connect hospitals with outpatient

records using the key information of zip code, date of birth, and gender.

Study period: January 2020 to January 2023

i

4 )

v’ Patients with no history of v Readmission within 30 day
cancer _ v Causes for readmission:
v ERCP procedure, excluding ————p sepsis, acute pancreatitis, or

due to sepsis, acute cholangitis
pancreatitis, or cholangitis




3. Methods ?) paTe

Identification of ERCP procedures: Statistical analysis: Atlas

Specific SUS coding system, named

Table of the Procedure, Medication, <

Orthotics, Prosthetics, and Special Q
Materials Management System of the >

SUS (SIGTAP) -

Identification of SUG and NSUG hospitals:

3 Single-use institutions

Boston
Scientific

15 Non-single use institutions



4. Results (= bata

Table 1. Descriptive information of total and readmitted patients in SUG and NSUG groups

SUG NSUG
Total Readmitted patients Total Readmitted patients
N 669 20 887 43
Male (%) 30.9 50.0 34.0 37.0
Mean age (SD) 55.0 (19.0) 55.0 (17.9) 55.0 (19.0) 51.0 (14.9)

Note. SUG — single-use group; NSUG — non-single-use group; SD — standard deviation;
Readmitted patients included patients who were hospitalized within 30 days after a patient's ERCP due to sepsis, acute pancreatitis, or cholangitis.

In comparison to the readmitted patients from SUG, the readmitted
ﬁﬁﬁ patients from NSUG had a higher proportion of female individuals
and patients with a lower mean age




5. Results =) pAaTA
Non-Single-Use (NSUG) Single-Use (SUG)
o Readmisson:
Readmission: 2.9% (20)
4.8% (43)

\a b

m No readmission m No readmission

m Readmission
within 30 days

m Readmission
within 30 days

Difference between NSUG Group and SUG Group:
The NSUG group had a percentage of readmissions approximately 65%
higher compared to the SUG group



6. Conclusion and next steps

Real-world data from Brazilian
administrative dataset

Higher % of readmissions in
NSUG institutions compared
to SUG institutions

Next step: estimation study
adjusting for confounders and
unbalanced data

making and optimal ERCP
management practices
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Does COVID-19 Increase Racial/Ethnic Differences in Prevalence
of PASC/Long COVID in Children and Adolescents?

— Findings from Difference-in-Differences Analyses using an EHR-Based Cohort from
the RECOVER Program

Bingyu Zhang
PhD student, University of Pennsylvania s
Advisor: Dr. Yong Chen Il
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What is PASC?

Long-COVID in children and adolescents

25.24%

Neuropsychiatric (%)
© Mood (sad, tense, angry,

anxiety, depression)
o Fatigue
o Sleep disorder (insomnia,

hypersomnia, poor sleep quality)

© Headache

© Cognition (confusion, impaired
concentration, learning difficulties,
memory loss)

o Dizziness
© Neurological abnormalities
(pins and needles, tremor, numbness)

© Balance problems
Gastrointestinal (%)

© Abdominal pain (2.91
o Constipation (2.05

o Diarrhea
© Vomiting/nausea (1:53)

Speech disturbances
Dysphagia

Balance problems
Urinary symptoms
Neurological abnormaiities
Hair loss

Changes in menstruation
Palpitations
Vomiting/nausea
Diarrhea
Musculoskeletal other
Fever

Dysphonia

Constipation

Variations in heart rate
Sore throat

Chest tightness

Swollen lymph nodes
Dermatologic
Abdominal pain
Ophtalmologic

Otalgia

Altered taste

Cough
Body weight changes
Rhinorrhea

Dizziness

Chest pain

Wl (I

Altered smell

Exercise
Loss of appetite
Cognition

Orthostatic intolerance

congestion

y symptoms.

Headache

Sleep disorder

Fatigue

8.00 - 17.00%
4.00 - 7.99%

2.00-3.99 %
0.00 - 1.99%

Cardiorespiratory (%)
o Respiratory symptoms (7.62)
o Sputum/nasal congestion (7.53)
© Orthostatic intolerance (6.92)
o Exercise intolerance (5.73)
o Chest pain(4.62)
o Rhinorrhea(4.15)
o Cough'3.80
O Sore throat (2.47
O Chest tightness2.45
O Variations in heart rate (2.29

o Palpitations(1:27)

Dermatologic/Teguments (%)

Hyperhidrosis
Dermatologic2.61 (dry skin,

itchy skin, rashes, hives)

Hair loss
Others (%)

o Loss of appetite

o Altered smell (phantom smell,
hyposmia, anosmia, hyperosmia)

© Body weight changes (3.99

o Myalgia/arthralgia '3.76

o Altered taste (3.65

o Otalgia (3.41 (tinnitus, earache or vertigo)

o Ophtalmologic (3.00  (conjuntivitis, dry
eyes, problems seeing/blurred vision,
photophobia, pain)

o Swollen lymph nodes 2.58

o Dysphonia

o Fever

© Musculoskeletal other (1:72)

o Changes in menstruation(1:27)

o Urinary symptoms

© Dysphagia

o Speech disturbances (0.44)

| [
0 2 4 6

https://recovercovid.org/long-covid

https://covid19community.nih.gov/what-you-need-to-know-about-long-covid

10

12

Lopez-Leon, S., Wegman-Ostrosky, T., Ayuzo del Valle, N.C. et al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep 12, 9950 (2022)
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https://recovercovid.org/long-covid
https://covid19community.nih.gov/what-you-need-to-know-about-long-covid

rching COVID to Enhan

RECOVER: Researching COVID to Enhance Recovery E s SiSSONs

» The National Institutes of Health (NIH) created the RECOVER Initiative to learn about the long-
term effects of COVID

» The goal of RECOVER is to rapidly improve our understanding of and ability to predict, treat,
and prevent PASC

» PI for pediatric RECOVER:
* Christopher Forrest (Children’s Hospital of Philadelphia)

» Pl for adult RECOVER:
* Rainu Kaushal (Weill Cornell)

» Biostatistics Core Director:

* Yong Chen
* for PCORnNet Pediatric RECOVER

https://recovercovid.org |I .ﬁ
||I nCIL



https://recovercovid.org/

Selected Publications on PASC within RECOVER

> Lancet Digit Health. 2022 Jul;4(7):e532-e541. doi: 10.1016/S2589-7500(22)00048-6.

5

RECOVER

Researching COVID to Enhance Recovery

Epub 2022 May 16.

Identifying who has long COVID in the USA: a
machine learning approach using N3C data

Emily R Pfaff 1, Andrew T Girvin 2, Tellen D Bennett 3, Abhishek Bhatia 4, lan M Brooks °,

Rachel R Deer ¢, Jonathan P Dekermanjian 7, Sarah Elizabeth Jolley &, Michael G Kahn 9,

Kristin Kostka 19, Julie A McMurry ", Richard Moffitt 12, Anita Walden 1, Christopher G Chute '3,
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Racial/ethnic Differences in PASC Prevalence

Millions of people have had COVID-19 — and in many ways, people of

color have been hit hardest.

Studies show that some groups and communities are more likely to go to

the hospital for health issues related to COVID-19. This is because people don't

have equal access to health care and information about COVID. And some

people live or work in places where they are more likely to catch COVID-19.
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Clinical Question

» Does there exist racial/ethnic differences in potential PASC symptoms and conditions

among children and adolescents after SARS-CoV-2 infection?
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Typical Solutions

JOURNAL ARTICLE

Large-scale evidence generation and evaluation
across a network of databases (LEGEND): assessing How many differences are

o [ ] [ ﬁ‘“ﬁ i i i ?
validity using hypertension as a case study 3 _ attributable to COVID infection
Martijn J Schuemie %, Patrick B Ryan, Nicole Pratt, RuiJun Chen, Seng Chan You,
Harlan M Krumholz, David Madigan, George Hripcsak, Marc A Suchard

Journal of the American Medical Informatics Association, Volume 27, Issue 8, August 2020,
Pages 1268-1277, https://doi.org/10.1093/jamia/ocaal24

N

Erﬁ

ot
-
|II o
N A Computing - nference - Learring
Iab at University of Pennsylvania




How Many Differences are Attributable to COVID Infection?

» Difference-in-differences approach
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Proposed Solution

Proposed method

Step 1: large-scale propensity
score (LSPS) stratification/
matching/weighting

* Fit LSPS model:

Race/ethnicity ~ confounders

«  Stratify or match or weight
on propensity scores

« Step 2: Outcome regression

model

- Difference-in-differences
analyses to control pre-
COVID raciall/ethnic
differences

* Regression model, with

K propensity score adjustey
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Study Cohort fjg RECOVER

Researching COVID to Enhance Recovery

225,723 patients across 13 institutions in the US

Inclusion Criteria
B Non-Hispanic White (NHW)

«  Documented SARS-CoV-2 infection Hispanic

* Age <21 years o _ _ _ B Non-Hispanic Black (NHB)
« Had at least one visit during the baseline period Asian American/Pacific Islander (AAPI)

» Had at least one visit during the follow-up period
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Takeaways

» Help understand racial/ethnic differences in PASC after SARS-CoV-2 infection among children
and adolescents

» Cover a broad spectrum of the US pediatric population

LEGEND principle 1: Generate evidence at a large scale
LEGEND principle 9: Generate evidence across a network of multiple databases

» Handle measured confounders using propensity score matching

» Control pre-COVID racial/ethnic differences using difference-in-differences analyses

LEGEND principle 5: Generate evidence using best practices to minimize bias

» Future work

* Explore methods to adjust for systematic bias
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Eye Care and Vision Research
Workgroup: First Year
Update
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OHDSI 2023 Global Symposium: October 20, 2023 slidesgo
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Eye Care and Vision Research Workgroup
Our Journey

GETTING o3 INITIAL STEPS

@ STARTED

MILESTONES @ NEXT STEPS



« OHDSI Eye Care and Vision Research Workgroup was started in
spring 2022

o Members of American Academy of Ophthalmology (AAOQ) Data
Standards Workgroup identified need for ophthalmic data
elements in the OMOP common data model

o Ophthalmic concepts in source terminologies had not been
updated consistently in over a decade

e Goals

o Create access to large diverse datasets of ophthalmic and
systemic data

o Enable research in vision and systemic health



Created subgroups for tasks & subspecialties

o Tasks: Concept mapping, visual acuity concept mapping, visual
impairment phenotype, image integration, ETL scripts

o Subspecialties: Glaucoma, retina, pediatrics/strabismus, uveitis

Recruited colleagues to participate

National Eye Institute (NEI) at National Institutes of Health
(NIH) hired DATA Scholar to manage the project



« Membership
o 122 total, ~40 active
o 13 trainees, 10 AI-READI (Bridge2Al) interns

o Ophthalmologists, optometrists, informaticists, vision scientists
o Meetings

o 17 Teams workgroup meetings

o 3 in person meetings

o ~42 subgroup meetings

o Countless ad-hoc meetings



o Collaborations
o 9 OHDSI workgroups

o 10 external groups including:

= American Academy of Ophthalmology (AAO)

= Association for Research in Vision and Ophthalmology (ARVO)
= National Eye Institute

= NIH Bridge2Al

« NIH All of Us

= SNOMED International and LOINC



o Data Concepts

o >3700 ophthalmic data elements analyzed & mapped
o 11 retina condition codes submitted to SNOMED International
o 224 visual acuity concepts submitted to LOINC

o Glaucoma concepts currently in discussion with SNOMED
International



Epic EHR Concept Matches
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Cai C.X., Halfpenny W., Boland M.V., Lehmann H.P., Hribar M., Goetz K.E. & Baxter S.L., Advancing toward a common data model in
ophthalmology: gap analysis of general eye examination concepts to standard OMOP concepts, Ophthalmology Science (2023), doi:
https://doi.org/10.1016/j.x0ps.2023.100391.



o Phenotypes
o 3visual impairment
o 6 uveitis*
o 3 new anti-VEGF users*
o 1 blinding disease*

o 5 diabetic retinopathy

*Submitted to How Often



o Publications
o 9 papers, 4 EyeWiki pages
o 5 more in progress
« Presentations
o 18 talks, 5 posters
e Support
o 1 NEI/NIH Data Scholar

o 2 Grant submissions



SOS Challenge 2023

o Led by Cindy X. Cai MD MS from
Johns Hopkins University

o Comparison of 3 anti-VEGF
agents for risk of kidney injury
when injected intravitreally

o Results: no increased risk for
kidney injury in any pairwise
comparisons

o Manuscript is in process
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Pilot at test sites
o Image integration
o Concept mappings (prioritized set)

More eye care and vision research community outreach and
education

More network studies

More funding support



First Year Challenges

Concept : :
: .p Diversity
N Modifiers
 Clinic schedules « Measurements often  All volunteer effort « Members are from
« Time zones have multiple « DATA Scholar position academic medical
modifiers is only 2 years centers
* Pre-coordination * Need more diverse
results in thousands partners

of concepts
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Summary

« Eye Care and Vision Research Workgroup had a productive
year

« Working towards goal of including ophthalmic data and
imaging in the OMOP common data model

o Still much more work to do—come join us!

Workgroup meeting is Sunday, Oct. 22 at 1 — 5 pm.



Thank youl!
o OHDSI Community

o Clair Blacketer, Paul Nagy, Elisse Katzman, Nathan Hall, Patrick
Ryan, Craig Sachson, Anna Ostropolets

o SOS Challenge collaborators

« Eye Care and Vision Research Workgroup

o Co-leads: Kerry Goetz, Sally Baxter

o Subgroup leads: Cindy Cai, Gayathri Srinivasan, Brian Stagg, Kavi
Thakoor, Brian Toy

o All of our wonderful members!

« National Eye Institute and National Institutes of Health



Eye Care and Vision Research Timeline
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