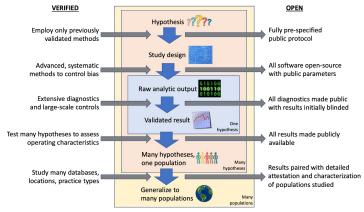

Insights from the large-scale evidence generation and evaluation across a network of databases for type 2 diabetes mellitus (LEGEND-T2DM)

Marc A Suchard, MD, PhD on behalf of the LEGEND investigators

VA Informatics and Computing Infrastructure (VINCI) US Department of Veterans Affairs and UCLA

2023 OHDSI Global Symposium 20 October 2023

Diabetes treatment and some open questions



• Are GLP1RA/SGLT2Is more effective (or safer) than DPP4I/SUs? 9. Pharmacologic Approaches to Glycemic Treatment: *Standards of Care in Diabetes*—2023

Nuha A. Elsayed, Grazia Aleppa, Vonta R. Arada, Mavendhara R. Bannuru, Horance M. Brown, Dennis Bruemmer, Billy S. Collins, Marita E. Hillord, Diana Isaacs, Eric L. Johnson, Scott Kahan, Kamich Khunti, Jace Lon, Sanh K. Joya, May Luo Peny, Phinp Prohalad, Richard E. Prateky, Jane Jeffre Seley, Robert C. Stanton, and Robert A. Gabbay, an behöf of the American Diabetes Association

LEGEND is a **guiding principle**-driven enterprise to deliver verified and open evidence at scale

• rich, rigorous, and reliable

Second-line initiators across a global network

Inclusion: adult diabetics, +metformin, -other glycemic agents, \pm CVD

- IBM MarketScan[®]Commercial Claim and Encounters Data (CCAE)
- IBM Health MarketScan® Multistate Medicaid Database (Medicaid)
- IBM Health MarketScan[®] Medicare Supplemental and Coordination of Benefits Database (Medicare)
- Optum Clinformatics Extended Data Mart

 Date of Death (Optum CEDM)
- Optum© de-identified Electronic Health Record Dataset (Optum EHR)
- US Open Claims

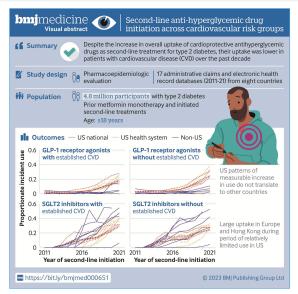
US Health System Databases

- Columbia University Irwing Medical Center
- Johns Hopkins Medicine
- Stanford Medicine
- Department of Veterans Affairs Healthcare System

HIC, University of Dundee (Scotland) UK-IQVIA Medical

(UK) Information System for Research in Primary Care (Spain) Germany Disease Analyser (Germany)

France Longitudinal Patient Database (France) Yinzhou Health Commission (China)

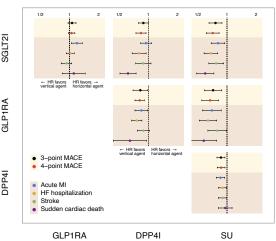

Hong Kong Hospital Authority (Hong Kong) (Taiwan)

Australia Longitudinal Patient Database (Australia)

19 administrative claims and EHR data partners around the world

Serial cross-sectional initiation (2011-2021)

Large variation in use of SGLT2I/GLP1RAs across CVD populations (less surprising)

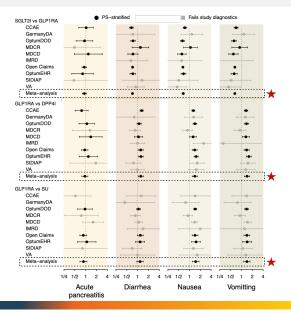

Uptake is **lower** in US relative to other country sources, particularly for CVD patients (more surprising)

Leading ECRs:

- Lovedeep Dhingra
- Arya Aminorroaya

Risk of major cardiovascular events (MACE)

- Via systematic best-practices:
- New-user cohort design (emulate target trial)
- LSPS adjustment (measured, unmeasured confounding)
- 100 negative controls (empirical calibration)
- Rigorous diagnostics (improved reliability)



- SGLT2I \approx GLP1RA (moderately unexpected)
- GLP1RA > DPP4I > SU (RWE fills in for missing RCTs)

LEGEND-T2DM is a rich, open resource

- **32 outcomes**: CV, safety, patient-centered (PC)
- Multiple populations: gender, age, race, CVD, renal disease
- Leading **ECR** (first PC manuscript):
 - Carlen Reyes (SIDIAP)
- Comparative GI symptoms: GLP1RAs > others (but no \uparrow acute pancreatitis)

LEGEND-T2DM is community responsive

Thyroid tumor relative risk under **multiple sensitivity analyses**

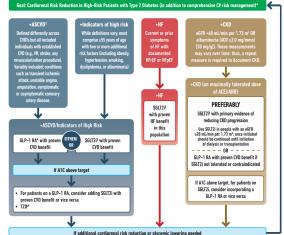
	Calibrated		
	HR (95%CI)	P-value	
GLP1RA vs SGLT2I			
PS matching on-treatment	0.83 (0.57 – 1.27)	0.33	
PS stratification on-treatment	0.88 (0.75 – 1.03)	0.13	
PS matching ITT	0.89 (0.74 - 1.07)	0.22	
PS stratification ITT	0.95 (0.85 – 1.06)	0.35	
GLP1RA vs Sulfonylureas			
PS matching on-treatment	0.95 (0.75 - 1.20)	0.68	
PS stratification on-treatment	0.94 (0.73 - 1.21)	0.64	
PS matching ITT	1.03 (0.87 - 1.23)	0.72	
PS stratification ITT	1.02 (0.84 - 1.24)	0.86	
GLP1RA vs DPP4I			
PS matching on-treatment	0.78 (0.60 - 1.01)	0.06	
PS stratification on-treatment	0.83 (0.67 - 1.03)	0.1	
PS matching ITT	0.92 (0.79 - 1.06)	0.24	
PS stratification ITT	0.93 (0.83 - 1.04)	0.22	

Case-control study (Bezin et al, Diabetes Care, 2023) alerts **EMA** to potential thyroid cancer / GLP1RA association

We delivered a short report to EMA's Pharmacovigilance Risk Assessment Committee

Leading MCR:

• Daniel Morales (Dundee)



Emerging directions in LEGEND-T2DM

Patients with renal disease

- Patients with heart failure
- Older adults
- Risk differences in women
- Ingredient (drug-level) comparisons
 - Open opportunities for all interested parties
 ... and that means you!

Treatment guidelines vary across populations, but need RWE support and refinement

Current legendary members:

... and you? please join us!

Arya Aminorroaya, Faaizah Arshad, Clair Blacketer, Mary Bowring, **Fan Bu**, Michael Cook, **Lovedeep Dhingra**, David Dorr, Talita Duarte-Salles, Scott DuVall, Thomas Falconer, Tina French, Elizabeth Hanchrow, Scott Horban, George Hripcsak, Jason Hsu, **Rohan Khera**, Harlan Krumholz, Wallis Lau, Jing Li, Kelly Li, Yuntian Liu, Yuan Lu, Kenneth Man, Michael Matheny, Nestoras Mathioudakis, Michael McLemore, Evan Minty, **Daniel Morales**, Paul Nagy, Akihiko Nishimura, Anna Ostropolets, Thanh Phan, Andrea Pistillo, Jose Posada, Nicole Pratt, Patrick Ryan, **Carlen Reyes**, Joseph Ross, Martijn Schuemie, Sarah Seager, Nigam Shah, Katherine Simon, Marc Suchard Eric Wan, Jianxiao Yang, Can Yin, Seng Chan You, Jin Zhou

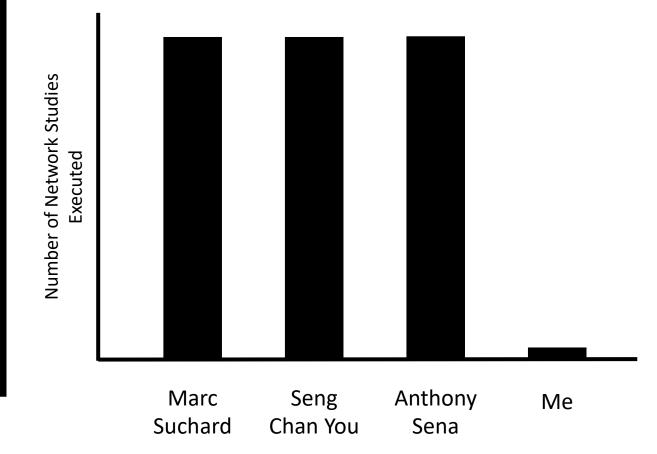
Funding:

- NIH K32 HL153775, R01 HL169954, R01 LM006910
- IPA agreement with the US Department of Veterans Affairs

Lessons Learned from OHDSI Network Studies

Sarah Seager, Marc Suchard, Cindy Cai, Seng Chan You, Anthony Sena

Intravitreal anti-VEGF and risk of kidney failure: A Sisyphus Challenge Study


Cindy X. Cai, MD, MS The Jonathan and Marcia Javitt Rising Professor Assistant Professor of Ophthalmology Retina Division, The Wilmer Eye Institute Johns Hopkins University School of Medicine

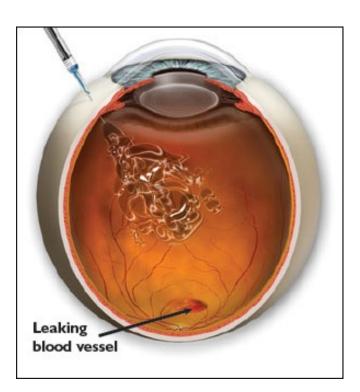
10/20/2023

Lessons Learned From Two Perspectives

A Clinician's Perspective...

A Newbie's Perspective...

Demystify the process of network studies: you can do it!



Background: anti-VEGF medications

- Systemic administration of anti-VEGF agents have known adverse kidney side effects
 - Acute kidney injury
 - Proteinuria
 - Hypertension
 - Vascular clotting events
 - Glomerular disease
 - Risk factors for: kidney failure (need for renal replacement therapy with dialysis or kidney transplant, aka end stage kidney disease or end stage renal disease)

Hanna RM, Barsoum M, Arman F, Selamet U, Hasnain H, Kurtz I. Nephrotoxicity Induced by Intravitreal Vascular Endothelial Growth Factor (VEGF) inhibitors: Emerging Evidence. *Kidney Int*. 2019;96(3):572-580. doi:10.1016/j.kint.2019.02.042 Gurevich F, Perazella MA. Renal Effects of Anti-angiogenesis Therapy: Update for the Internist. *Am J Medicine*. 2009;122(4):322-328. doi:10.1016/j.amjmed.2008.11.025 Izzedine H, Escudier B, Lhomme C, et al. Kidney Diseases Associated With Anti-Vascular Endothelial Growth Factor (VEGF). *Medicine*. 2014;93(24):333-339. doi:10.1097/md.0000000000000207 Brandes, A. A., Bartolotti, M., Tosoni, A., Poggi, R. & Franceschi, E. Practical Management of Bevacizumab-Related Toxicities in Glioblastoma. *Oncol* **20**, 166–175 (2015).

Intravitreal Anti-VEGF and Systemic Absorption

Drug	Size	Systemic Elimination (half-life)
Ranibizumab	48 kDa	2 hours
Aflibercept	115 kDa	5-6 days
Bevacizumab	149 kDa	20 days

Detectable/elevated serum drug levels Decreased plasma concentrations of free-VEGF

Question: Is there evidence for preferentially choosing ranibizumab to lower the risk of kidney failure?

<u>Hypothesis</u>: in pairwise comparisons, lower risk of kidney failure in patients with blinding diseases who are exposed to ranibizumab

https://www.randeye.com/intravitreal-injection/

Avery RL, Castellarin AA, Steinle NC, et al. SYSTEMIC PHARMACOKINETICS AND PHARMACODYNAMICS OF INTRAVITREAL AFLIBERCEPT, BEVACIZUMAB, AND RANIBIZUMAB. Retin. 2017;37(10):1847-1858. doi:10.1097/iae.00000000001493 https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/125085s0169lbl.pdf

SOS Challenge Weekly Tutorial Schedule

To answer the question: is there a difference in the risk of kidney failure comparing patients who received ranibizumab, aflibercept, and bevacizumab

Times	Торіс
11 am / 7 pm ET	SOS Week 1 Tutorial: Initiating A Network Study
11 am / 7 pm ET	SOS Week 2 Tutorial: Data Diagnostics
11 am / 7 pm ET	SOS Week 3 Tutorial: Phenotype Development
11 am / 7 pm ET	SOS Week 4 Tutorial: Phenotype Evaluation
11 am / 7 pm ET	SOS Week 5 Tutorial: Creating Analysis Specifications
11 am / 7 pm ET	SOS Week 6 Tutorial: Network Execution
11 am / 7 pm ET	SOS Week 7 Tutorial: Study Diagnostics
11 am / 7 pm ET	SOS Week 8 Tutorial: Evidence Synthesis
11 am / 7 pm ET	SOS Week 9 Tutorial: Interpreting The Results
	11 am / 7 pm ET 11 am / 7 pm ET

www.ohdsi.org

#JoinTheJourney

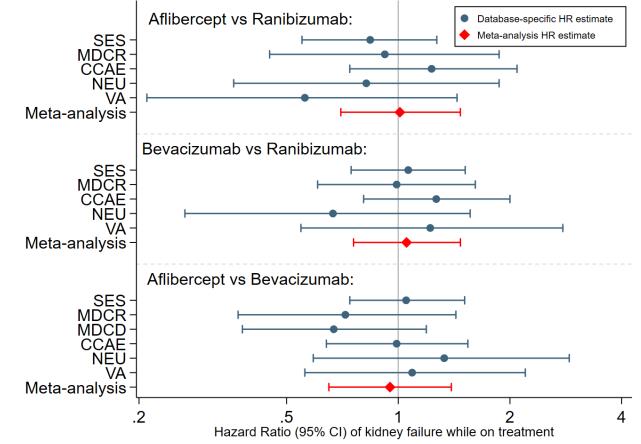
Anti-VEGF OHDSI Study: Process

OHDSI Tools Used

- ATLAS
- PheValuator
- Strategus execution pipeline to call Hades Packages (CohortGenerator, Characterization, Cohort Incidence, Cohort Method, PatientLevelPrediction)
- EvidenceSynthesis

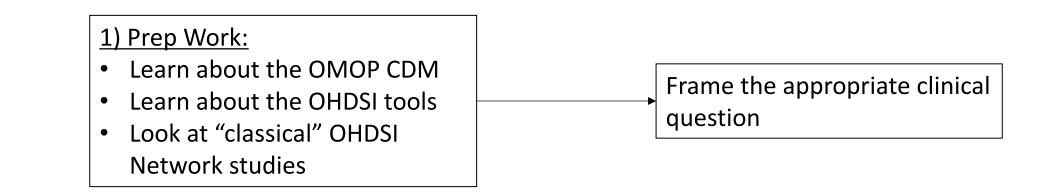
Data Sources
IBM Health MarketScan Medicare Supplemental and Coordination of Benefits Database (MDCR)
IBM Health MarketScan Commercial Claims and Encounters Database (CCAE)
IBM Health MarketScan Multi-State Medicaid Database (MDCD)
Optum(R) de-identified Electronic Health Record Dataset (OptumEHR)
Optum's Clinformatics Extended Data Mart - Socio-economic Status (SES)
Japan Medical Data Center (JMDC)
Johns Hopkins Medical Enterprise (JHME)
Department of Veterans Affairs (VA)
PharMetrics Plus (NEU)
Columbia University Medical Center (CUMC)
Stanford (STARR)
University of Southern California (USC)

- 12 databases:
 - 6 administrative claims and 6 EHR
- Collectively: 485 million patients



Anti-VEGF OHDSI Study: Results

- 6.1 million patients with blinding diseases

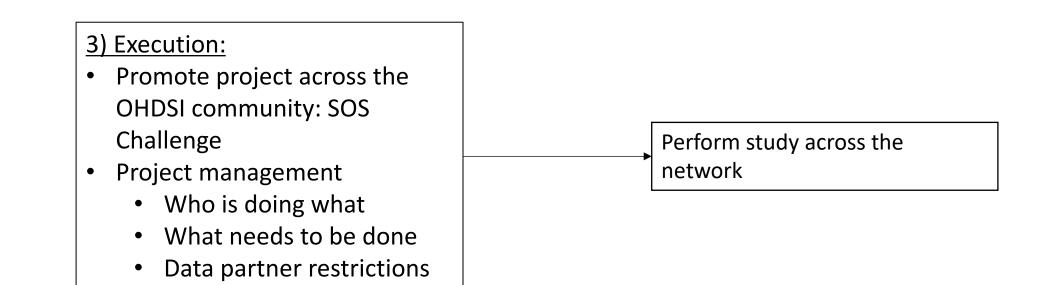

 240,247 anti-VEGF
 37,189 received ranibizumab
 39,447 aflibercept
 163,611 bevacizumab

 Aflibercept vs Rates and the second sec
 - 1209 kidney failure outcomes
 - Standardized incidence proportion of kidney failure: 680 per 100,000 persons
 - In all pairwise comparison, the hazard ratio was around 1.0

For retina colleagues: can choose between any of these 3 anti-VEGF medications for those at risk for kidney failure

From a Clinician / Newbie's Perspective

From a Clinician / Newbie's Perspective


2) Pre-Execution:

- Find core team (e.g., clinician, epidemiologist, biostatistician)
- Consult with OHDSI experts

Develop study protocol

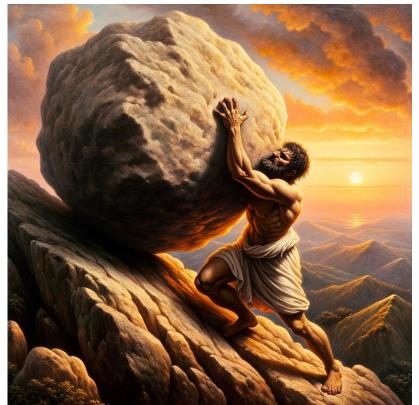
- Phenotype development
- Cohort definitions
- Study design choices

From a Clinician / Newbie's Perspective

From a Clinician / Newbie's Perspective

Not for the faint of heart...but you can do it too!

Network studies can answer important clinical questions



Come to poster #306 to chat more

Save Our Sisyphus: Is fluoroquinolone use associated with the development of aortic aneurysms and aortic dissections?

An international distributed network study of 390 million patients with urinary tract infection

Seng Chan You

Dep. of Biomedical Systems Informatics, Yonsei University College of Medicine

Chief investigators: Jack Janetzki, Nicole Pratt – University of South Australia Seng Chan You, Seonji Kim, Jung Ho Kim, Jung Ah Lee – Yonsei University

Background and context of study

- Fluoroquinolones are broad spectrum antibiotics
- Indicated for many infections including pneumonia, bone and joint infections, and Urinary Tract Infections (UTIs)
- Use is rising internationally [1]
- Generally well tolerated:
 - Common side effects: vomiting, diarrhoea, abdominal pain
 - Serious adverse events (e.g. tendon ruptures)

[1] Van Boeckel TP, et al doi: 10.1016/S1473-3099(14)70780-7

Timeline of warnings

no increased risk of AA/AD among 1.2M people with UTIs

2019-2023

2022 Study from Taiwan shows

2019 TGA

2008

FDA black box warning

(tendinitis and tendon

rupture)

Warnings based on findings from epidemiologic studies

2016

FDA enhanced label

warnings (joint pain, tendon

rupture, tendinitis, altered

mental status)

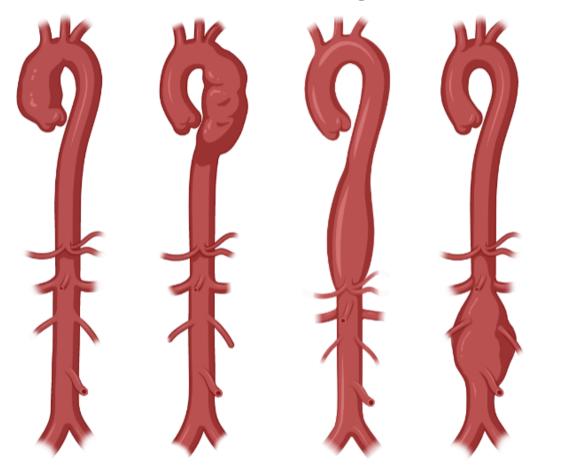
Pharmacological mechanism not well understood

Chen YY, Yang SF, Yeh HW, Yeh YT, Huang JY, Tsao SL, Yeh CB. Association Between Aortic Aneurysm and Aortic Dissection With Fluoroquinolones Use in Patients With Urinary Tract Infections: A Population-Based Cohort Study. J Am Heart Assoc. 2022 Mar 15;11(6):e023267. doi: 10.1161/JAHA.121.023267. PMID: 35229623

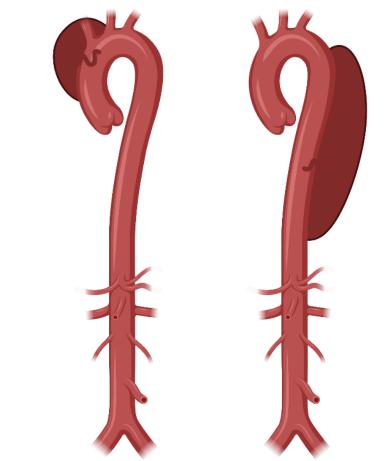
2018 EMA review of rare but serious ADEs with FQs led to restrictions on prescribing

2018

2020 TGA investigates updates Pls AA/AD risk for FQs with warnings of AA/AD


FDA warning: increased

risk of aortic aneurysms


or dissections

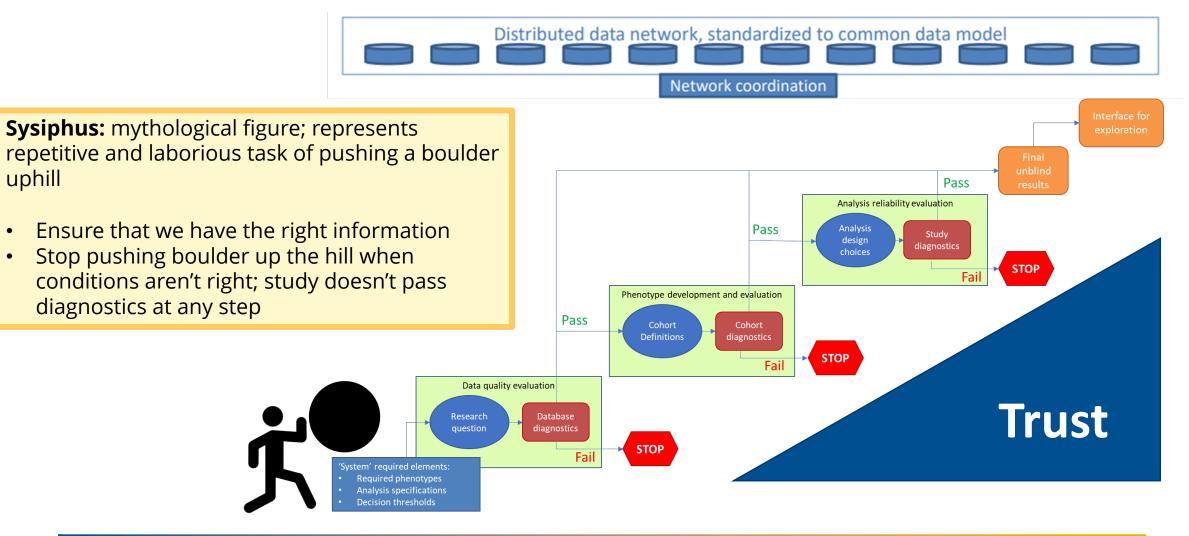
Aortic aneurysm

Aortic Dissection

Background and context of study

- Prior warnings based on epidemiologic studies
- 2020 Meta-analysis of 5 observational studies described quality of evidence as moderate
 - 2.8M patients
 - Comparators: non-users or users of other antibiotics
 - Primary outcome: first occurrence of aortic diseases
 - OR 2.23 (95%CI 1.80-2.77) (range 1.66-2.78)
 - Inconsistencies in study designs
 - Patient age ranges, follow-up duration
 - Potential for unmeasured confounding (by indication and surveillance bias)

Dai XC, Yang XX, Ma L, Tang GM, Pan YY, Hu HL. Relationship between fluoroquinolones and the risk of aortic diseases: a meta-analysis of observational studies. BMC Cardiovasc Disord. 2020;20(1):49


Prior observational studies

	JAMA Intern Med. 2015	BMJ Open 2015	BMJ 2018	J Am Coll Cardiol. 2018	JAMA Intern Med. 2020	JAMA Intern Med. 2020	JAMA Surg. 2021
Study design	Nested case-control	Nested cohort	Cohort study	Case-crossover	Nested case-control	Cohort study	Cohort study
Data sources	Taiwan NHIRD	Ontario Registered Persons, Drug Benefits database	Swedish National Prescribed Drug, Patient Register, Statistics Sweden	Taiwan NHIRD	Taiwan NHIRD	US (IBM MarketScan)	US (IBM MarketScan)
Indication					Lower RTI, Genitourinary tract infection, Skin, soft tissue, or bone infections, Intra-abdominal infections, Mixed infections, Septicemia	Pneumonia, UTI	Upper RTI, Skin/soft tissue/bone/lymph UTI, Streptococcal/staphylococcus Gl tract, Pneumonia, Pyelonephritis Ocular, Cholecystitis, Appendicitis Syphilis, Dental
Active comparators			Amoxicillin		Amoxicillin- clavulanate, Ampicillin- sulbactam, Extended-spectrum cephalosporins	Azithromycin for pneumonia Trim and sulf for UTI Amoxicillin without indication	Amox-clav, Azithromycin, Cephalexin Clindamycin, Trim and sulf
Rationale for selecting comparators			Approved indications largely overlap with FQ		Based on the recommendations of the treatment guidelines in Taiwan	Clinically appropriate	Based on commonly prescribed antibiotics for similar indications
 Different study designs Predominantly single country studies Indication of FQ not specified or multiple indications of varying severity Unspecified or different active comparators Covariate Balance: mostly PS matching however no assessment of clinical equipoise 							
6 I		 Some studies addressed systematic error (usually single positive or negative control) 					

How do we build trust in real-world evidence?

Open science system to build trust and confidence:

uphill


•

٠

SOS challenge

- Pitched topic given:
 - ongoing regulatory monitoring
 - inconsistencies of prior methodologies
 - recent evidence of no association
- Over 9 weeks (with help of OHDSI team):
 - Planned and executed study
- Sharing results today

SOS Challenge Weekly Tutorial Schedule

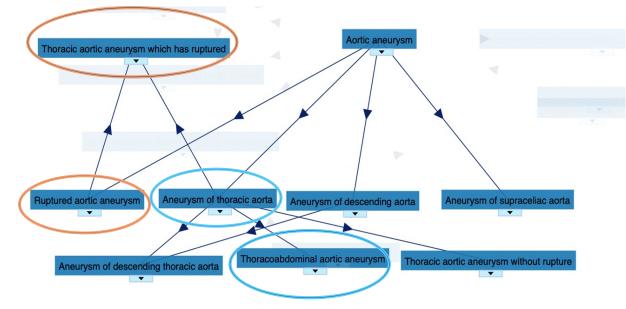
Date	Times	Торіс
Mar. 28	11 am / 7 pm ET	SOS Week 1 Tutorial: Initiating A Network Study
Apr. 4	11 am / 7 pm ET	SOS Week 2 Tutorial: Data Diagnostics
Apr. 11	11 am / 7 pm ET	SOS Week 3 Tutorial: Phenotype Development
Apr. 18	11 am / 7 pm ET	SOS Week 4 Tutorial: Phenotype Evaluation
Apr. 25	11 am / 7 pm ET	SOS Week 5 Tutorial: Creating Analysis Specifications
May 2	11 am / 7 pm ET	SOS Week 6 Tutorial: Network Execution
May 9	11 am / 7 pm ET	SOS Week 7 Tutorial: Study Diagnostics
May 16	11 am / 7 pm ET	SOS Week 8 Tutorial: Evidence Synthesis
May 23	11 am / 7 pm ET	SOS Week 9 Tutorial: Interpreting The Results

#JoinTheJourney

Treatment, Comparator & Outcome

Exposure Cohorts

Indication: Urinary Tract Infection


- Within 7 days prior
- No hospitalisation within 7 days prior; taking antibiotic in outpatient setting

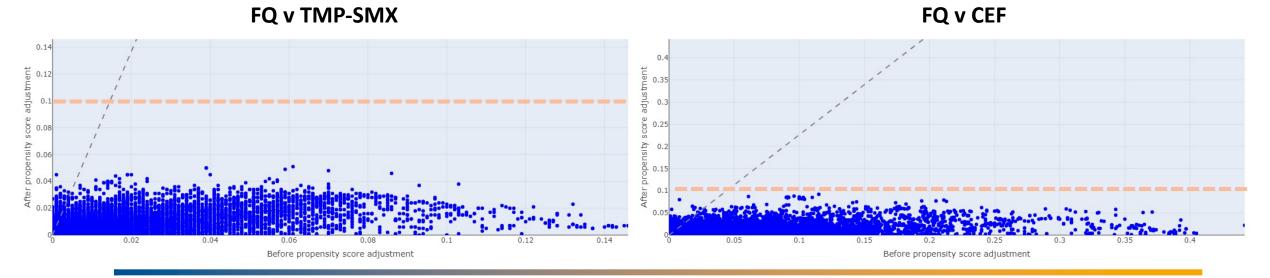
Fluoroquinolones		Active comparators				
All		 Trimethoprim +/- sulfamethoxazole (TMP) Cephalosporins (CPH) Chosen based on treatment guidelines and usual clinical car 				
	Outcomes					
Outcome of interest			Negative controls			
1. 2. 3. 4.	Aortic aneurysm or aortic dis during 60 days Aortic aneurysm (+/- rupture) Aortic dissection TAR of 30, 90, 365 days	section	As recommended by CommonEvidenceModel (N~50) (Used to test for systematic bias)			

Note on phenotyping of outcome cohorts

- See SOS Challenge tutorial by Evan Minty: defining outcome cohorts
- Prior studies inconsistent on definition of outcome
- ICD codes used interchangeably
- Requiring primary position diagnosis decreases observed counts that would contribute to estimate by 75% - carefully define inclusion criteria to ensure acceptable specificity of cases captured

Data partners

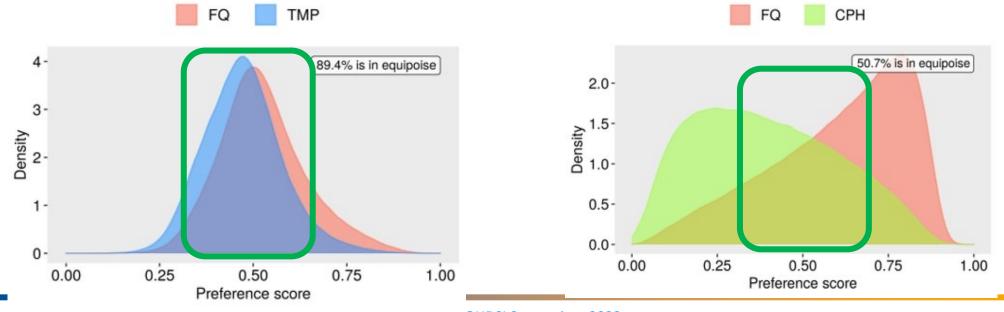
17 data partners across the OHDSI network



Results

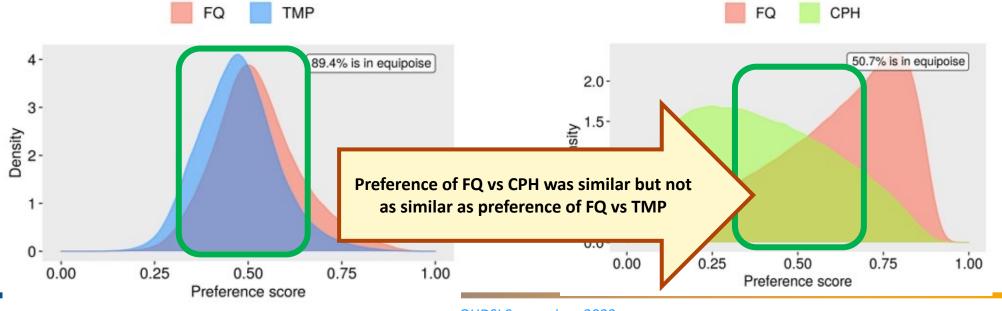
Covariate balance: Optum EHR

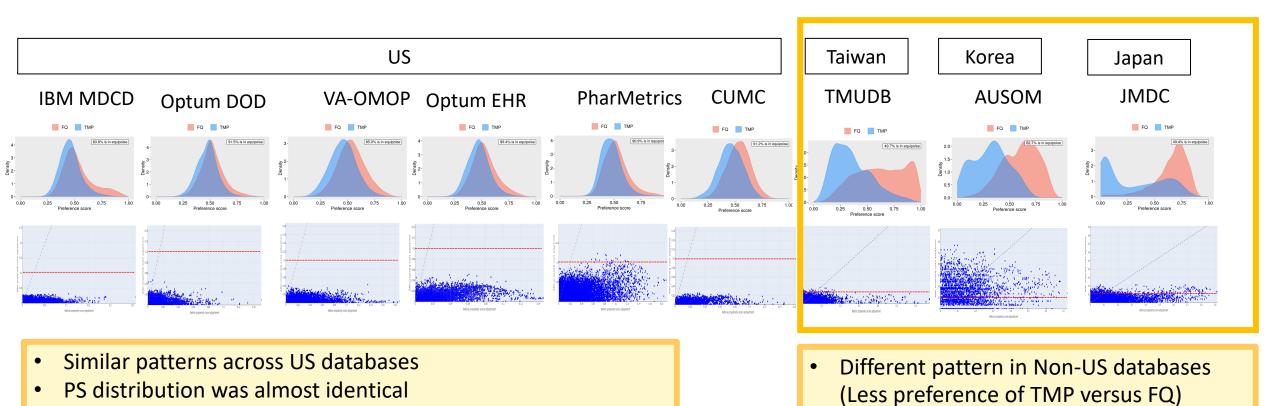
- Can check covariate balance before and after PS matching by plotting standardised mean differences
 - Determine whether baseline characteristics are sufficiently similar between target and comparator cohorts
 - If SMD < 0.1 (10%) for all covariates = sufficient balance</p>
 - All < 0.1 for all cohort comparisons in Optum EHR



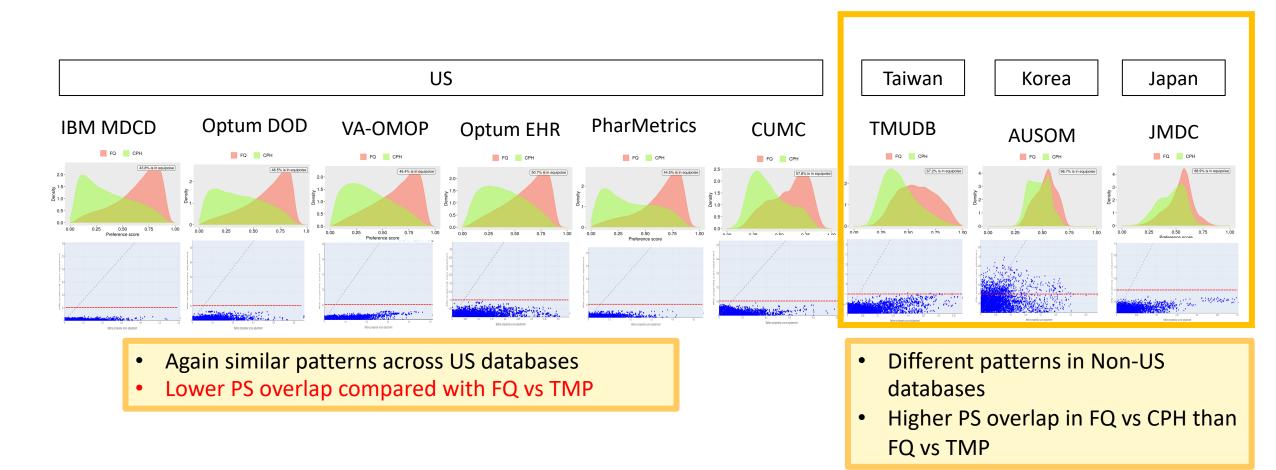
OHDSI APAC Symposium 2023

Propensity score: Optum EHR

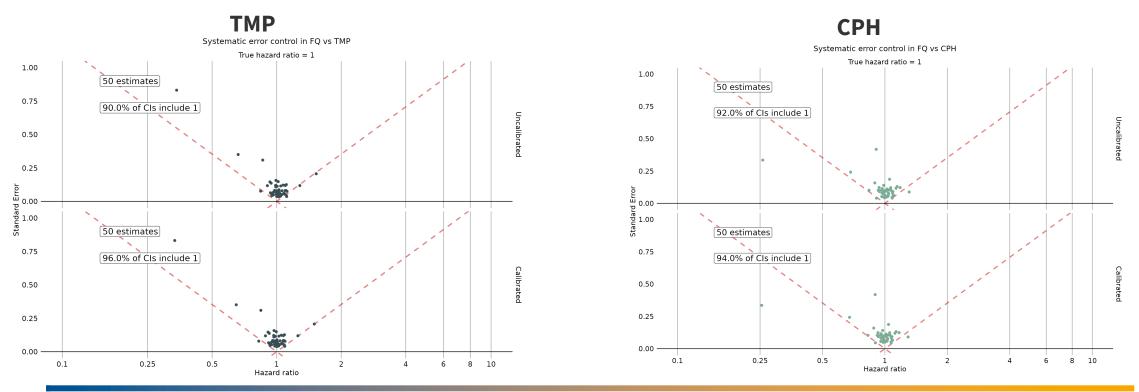

- Check **empirical equipoise** by observing **preference score distribution**:
 - Transformation of propensity score
 - Aims for overlap between 0.3 and 0.7
 - Higher overlap ensures that results will be generalisable
 - Good equipoise = large PS model could not discriminate between two treatments


Propensity score: Optum EHR

- Having achieved covariate balance between matched cohorts, is our result generalisable back to original population?
- Check **empirical equipoise** by observing **preference score distribution**:
 - Transformation of propensity score
 - Aims for overlap between 0.3 and 0.7
 - Higher overlap ensures that results will be generalisable
 - Good equipoise = large PS model could not discriminate between two treatments



Preference Score distributions across several databases FQ v TMP


Preference Score distributions across several databases FQ v CPH

Systematic error

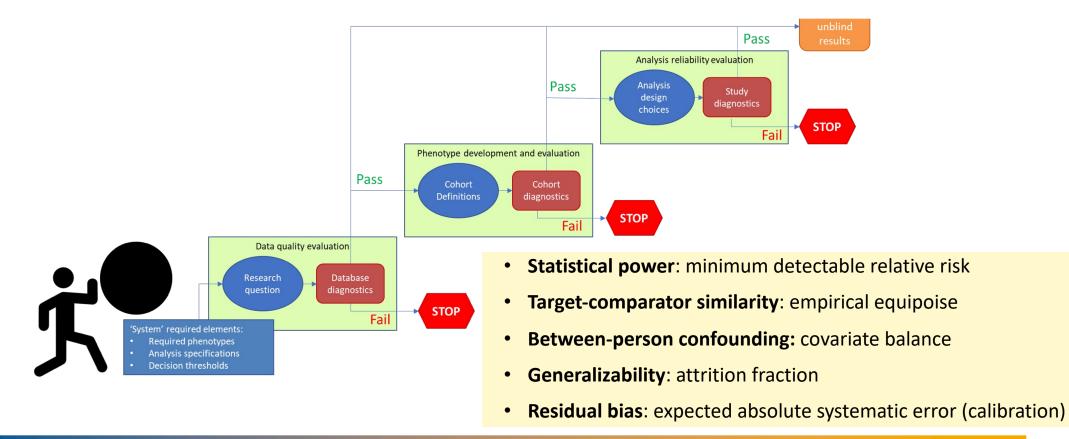
- 50 negative controls
- Estimates below the line in graphs are statistically different from the true effect size
- Negative control outcomes should return estimate of 1 (95% CIs should contain 1 95% of the time)
 - In both cases 95% of negative control estimates had HR with CI that included 1 after empirical calibration, which indicates low systematic error

OHDSI Symposium 2023

Source	Matched(n)	FQ	TMP	HR (95% CI)	Max SDM	PS overlap	EASE	Diagnostics
CUMC(US)	3996	<7.69	7.69 ←	→ 0.45(0.08-2.58)	0.12	0.92	0.15	PASS
IBM CCAE(US)	505839	0.58	0.53	1.07(0.70-1.63)	0.03	0.94	0.04	PASS
IBM MDCD(US)	88791	2.87	2.09	→ 1.36(0.84-2.19)	0.03	0.88	0.03	PASS
Optum DOD(US)	410842	3.75	4.53	0.83(0.68-1.01)	0.05	0.93	0.04	PASS
Optum EHR(US)	478507	2.23	2.34	0.92(0.73-1.15)	0.05	0.91	0.06	PASS
PharMetrics(US)	358621	1.12	0.96	1.15(0.80-1.66)	0.03	0.93	0.03	PASS
VA(US)	108202	4.46	6.40 —	0.67(0.50-0.91)	0.04	0.86	0.05	PASS
TMUDB(TW)	2328	<13.60	0.00	NA(NA- NA)	0.14	0.50	0.50	FAIL
AUSOM(KR)	61	0.00	0.00	NA(NA- NA)	0.57	0.62	NA	FAIL
NHIS-NSC(KR)	442	0.00	0.00	NA(NA- NA)	0.30	0.77	NA	FAIL
Yonsei(KR)	251	0.00	0.00	NA(NA- NA)	0.33	0.40	NA	FAIL
JMDC(JP)	722	0.00	0.00	NA(NA- NA)	0.21	0.48	NA	FAIL
Japan Claims(JP)	1106	0.00	0.00	NA(NA- NA)	0.20	0.36	NA	FAIL
LPD Australia(AU)	947	0.00	0.00	NA(NA- NA)	0.16	0.55	NA	FAIL

Shades proportional to PS overlap

Favors FQ Favors TMP


Source	Matched(n)	FQ	CPH		HR (95% CI)	Max SDM	PS overlap	EASE	Diagnostics
CUMC(US)	4867	6.31	8.84	← • → →	0.73(0.22-2.42)	0.09	0.58	0.14	PASS
IBM CCAE(US)	222632	1.01	0.85		1.16(0.71-1.91)	0.08	0.43	0.05	PASS
IBM MDCD(US)	67180	5.19	3.52		1.45(0.96- 2.21)	0.03	0.43	0.04	PASS
Optum DOD(US)	274869	6.29	7.03		0.90(0.72-1.13)	0.06	0.47	0.07	PASS
Optum EHR(US)	338470	4.10	4.50		0.89(0.73-1.09)	0.09	0.52	0.04	PASS
PharMetrics(US)	211877	2.41	1.84		1.29(0.92-1.81)	0.06	0.44	0.03	PASS
VA(US)	68155	9.25	10.46		0.86(0.65-1.13)	0.06	0.47	0.05	PASS
TMUDB(TW)	7912	<4.08	4.05	→	0.77(0.19- 3.08)	0.10	0.69	0.20	PASS
AUSOM(KR)	528	0.00	0.00		NA(NA- NA)	0.30	0.99	NA	FAIL
NHIS-NSC(KR)	5073	<6.18	<6.17	← →	1.60(0.11-24.44)	0.13	0.94	0.35	FAIL
Yonsei(KR)	3581	<8.90	<8.97	← −− →	0.80(0.03-20.72)	0.12	0.91	0.47	FAIL
JMDC(JP)	9569	<3.26	<3.26	<→	0.48(0.03- 7.48)	0.07	0.89	0.27	FAIL
Japan Claims(JP)	15060	<2.06	0.00		NA(NA- NA)	0.07	0.56	0.13	PASS
LPD Australia(AU)	889	0.00	0.00		NA(NA- NA)	0.18	0.58	NA	FAIL
			0	.5 1 2					

1 Favors FQ Favors CPH

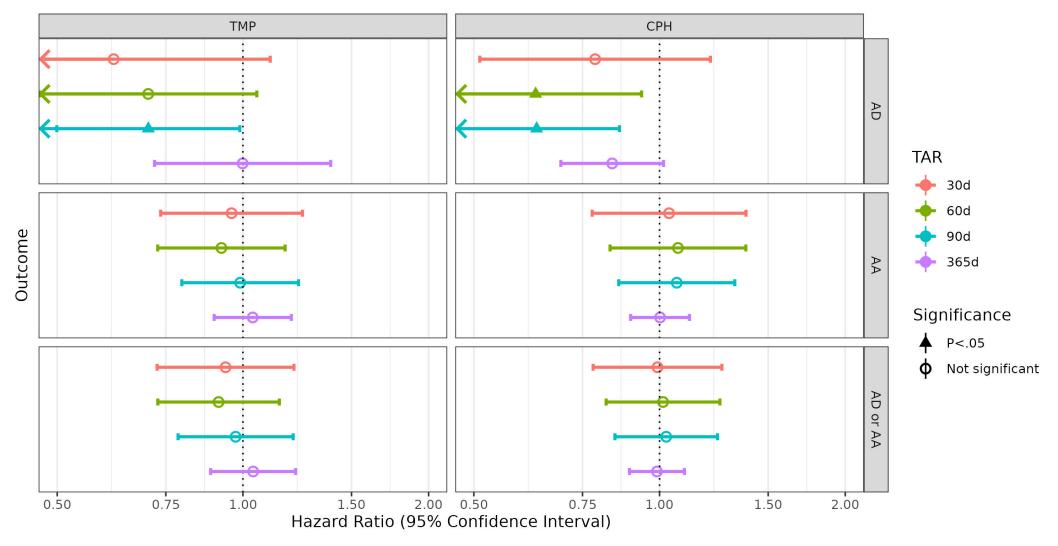
OHDSI OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS

Summary:

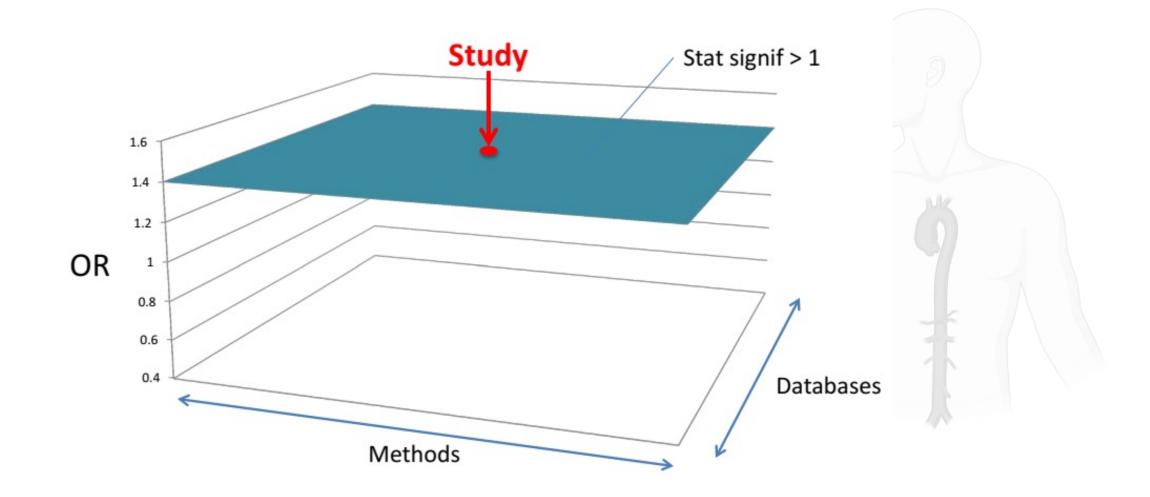
- Objective diagnostics helped us to objectively interpret reliability and validity of evidence we produced
- At each point in SOS journey we were willing to **STOP** if failed diagnostics
- Meta-analysis only includes databases that **passed** diagnostic checks

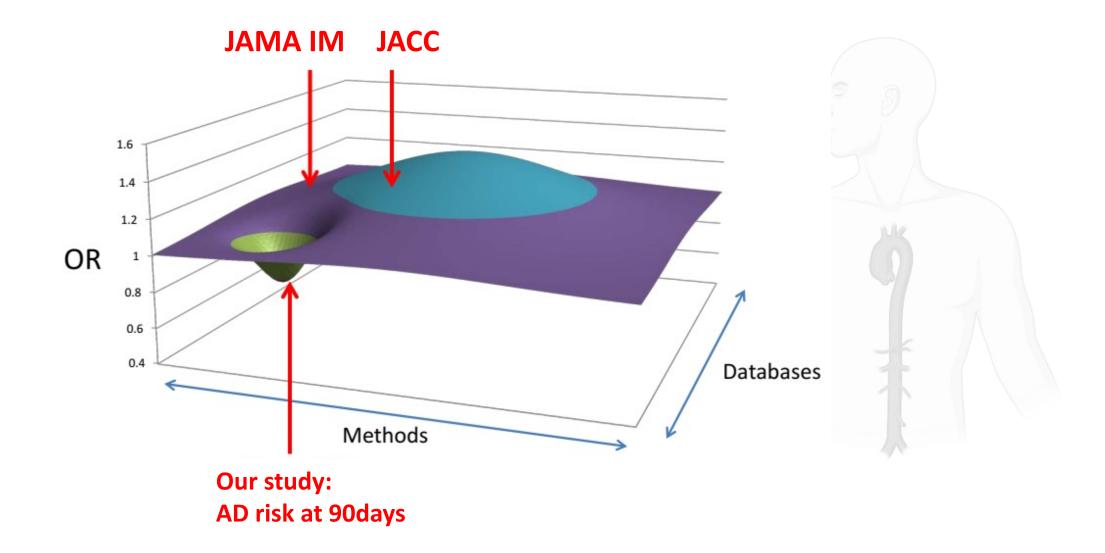
Meta-analysis: 60 day risk window, AA AD

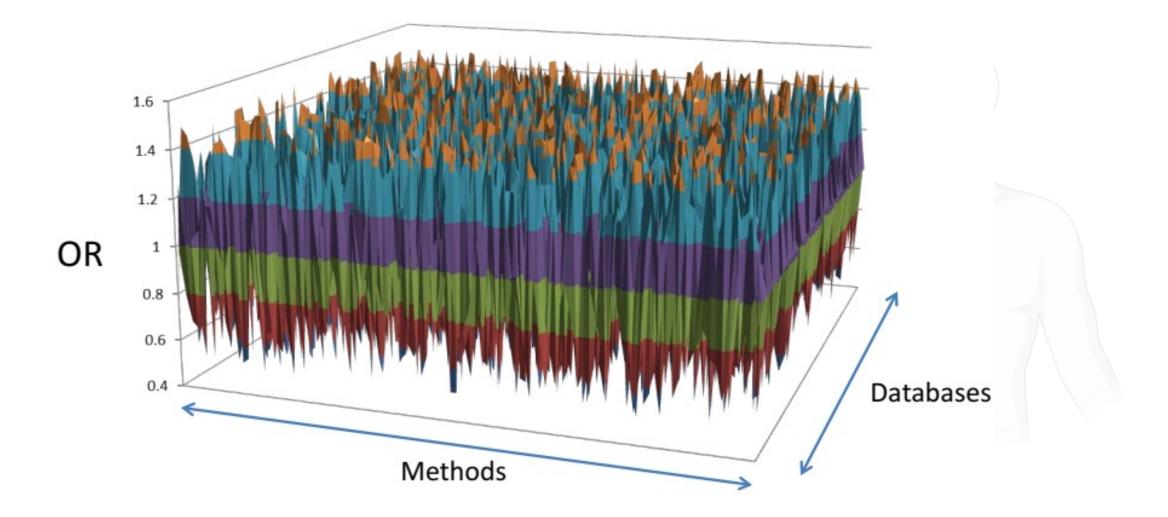
Source	Hazard Ratio (95% CI)	_				
CUMC	0.45 (0.08 - 2.58)	F	•			
IBM MDCD	1.36 (0.84 - 2.19)		⊢↓	-		
Optum DoD	0.83 (0.68 - 1.01)		⊢ ♦−1			
Optum EHR	0.92 (0.73 - 1.15)		⊢ ♣			
PharMetrics	1.15 (0.80 - 1.66)		⊢			
VA-OMOP	0.67 (0.50 - 0.91)					
Summary	0.92 (0.74 - 1.16)		⊢<>⊢		Comparator	Meta-analysis
		0.1 0.25				Hazard Ratio (95%C
			Hazard Ratio		TMP-SMX	0.92 (0.74-1.16)
Source	Hazard Ratio (95% CI)					0.92 (0.74-1.10)
CUMC	0.73 (0.22 - 2.42)	·			CEF	1.02 (0.83-1.25)
IBM MDCD	1.45 (0.96 - 2.21)		· · · · · · · · · · · · · · · · · · ·	-		, , , , , , , , , , , , , , , , , , ,
Optum DoD	0.90 (0.72 - 1.13)		⊷			
Optum EHR	0.89 (0.73 - 1.09)		⊷			
PharMetrics	1.29 (0.92 - 1.81)		⊢			
TMUDB	0.77 (0.19 - 3.08)					
VA-OMOP	0.86 (0.65 - 1.13)		⊢ ♣ <u></u> -•			
Summary	1.02 (0.83 - 1.25)		\rightarrow			


OHDSI Symposium 2023

CEF


TMP


Sensitivity analyses


Distribution of possible results for one single question

Distribution of possible results for one single question

Distribution of possible results for one single question

DOI: 10.1002/pds.5005

COMMENTARY

Assessing strength of evidence for regulatory decision making in licensing: What proof do we need for observational studies of effectiveness?

Jim Slattery 💿 | Xavier Kurz 💿

European Medicines Agency, Amsterdam, The Netherlands

Correspondence

26

Jim Slattery, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS Amsterdam, The Netherlands. Email: jim.slattery@ema.europa.eu

Abstract

Before a medicine can be recommended for a marketing authorization research must be provided to regulators that convincingly supports the benefit-risk of the product in the claimed indication. The established criteria for such research are usually expressed in terms of evidence from randomized controlled trials (RCT). If studies in real-world data (RWD) are to be accepted as all or part of the package of evidence, it is necessary to understand the relationship between information from studies of RWD and that from RCTs. The aim of this review is to consider how the strength of such evidence can be quantified in a manner that relates to the decision-making process, what research is currently available to further this understanding and what additional information will be required.

Key points

- Availability of large quantities of observational data from clinical practice and health insurance systems has prompted suggestions of a potential role in supporting regulatory assessment of drug effectiveness.
- In order to protect public health, regulators must understand the reliability of the evidence underlying their decisions.
- Analyses of observational data are prone to biases that necessitate empirical evaluation.
- Large-scale experiments to measure errors n observational studies are already under way and will inform decisions on how the results of such studies can be used by regulators.
- Additional work will be required to ensure that the design of future studies conform to validated standards and that their conduct can be verified by regulators.

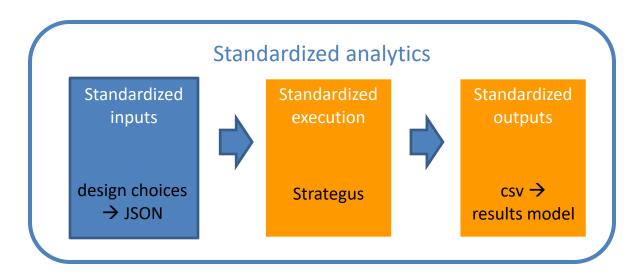
WILEY

Summary of findings

- We observed considerable heterogeneity in the characteristics of patients and comparative preference of antibiotics across various databases
- No consistent evidence was found to suggest an increased risk of aortic aneurysm or dissection following the use of fluoroquinolones in patients with UTI
- Generalizability of our findings cannot be guaranteed to non-US countries.

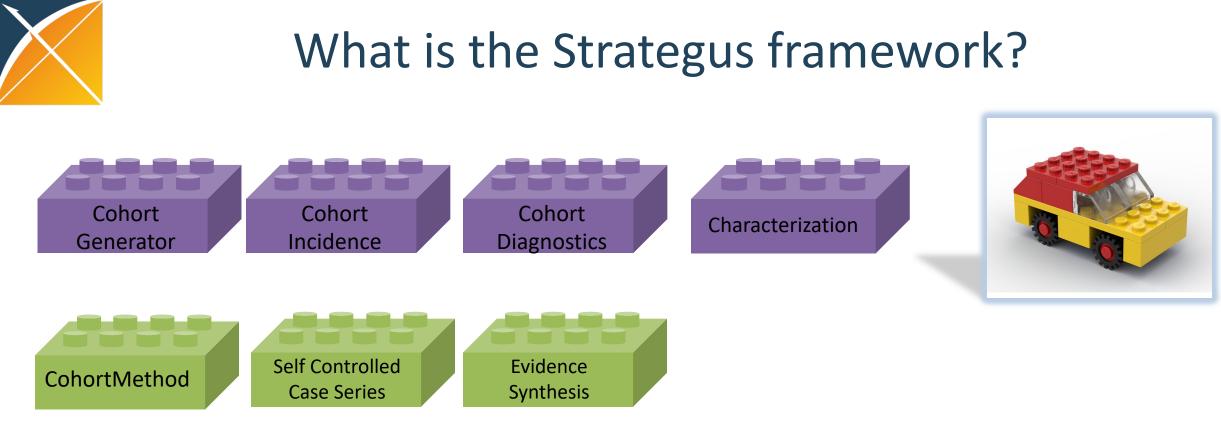
Final remarks

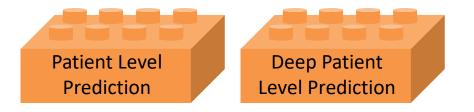
- Our findings suggest that relying on a singular database without proper diagnostics can potentially lead to unreliable evidence
- To provide globally generalizable evidence, there's an urgent need for more analysis-ready standardized healthcare data worldwide



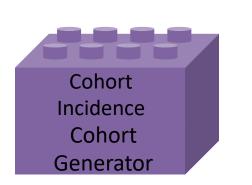
Lessons learned applying the Strategus framework across the OHDSI Evidence Network

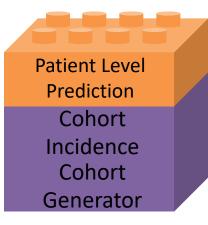
Anthony G. Sena Johnson & Johnson Department of Medical Informatics, Erasmus University 20 October 2023

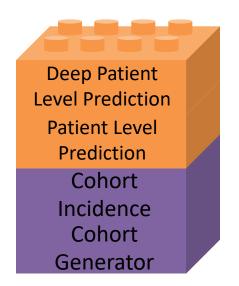



What is the Strategus framework?

- Characterization
 - Cohort diagnostics
 - Cohort features
 - Incidence rates
 - Time-to-event
 - Dechallenge / rechallenge
- Patient-level prediction
- Population-level effect estimation
 - Comparative cohort
 - Self-controlled case-series (SCCS)

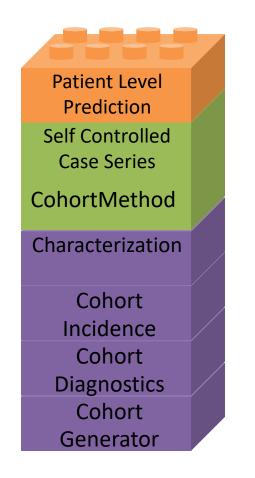



Building up standardized analytics one lego at a time.



What is the Strategus framework?

• Strategus modules can be combined to accommodate various study designs.


Generator

 OHDSI Community came together for 9 weeks in March – May 2023 for the Save Our Sisyphus (SOS) Challenge

 Educated the OHDSI community on the process of leading or participating in an OHDSI network study

- Analysis design used Strategus for both studies:
 - Intravitreal anti-VEGF and kidney failure risk (Anti-VEGF)
 - Fluoroquinolone and aortic aneurysm risk (FQ)
- Strategus provided standardized executing environment in R
- Allows for re-use of execution environments for each study

• OHDSI Community learned the process for running the SOS Challenge studies Strategus during 2 online sessions

Session 2: Anthony Sena, Chungsoo Kim

Session 1: Jenna Reps, Jack Brewster (slides)

- OHDSI Community came together for "office hours" to share questions/issues that arose when running the studies.
- OHDSI Community members shared learnings and patches that enabled others in the community to run Strategus and complete the study at their site
- Many of the lessons learned are shared as GitHub issues and are planned for future releases of Strategus

Lessons Learned

- Standardization of your R environment matters, and it is not easy — Result: HADES has declared an official R version that everyone should use
- Use of tools such as renv are necessary to control the R execution environment
 - Result: Strategus makes use of renv to control the execution environment and R dependencies
- Collaboration is critical in network studies
 - Office hours and HADES working group calls helped to improve the quality of the Strategus software

Results

	Study Status (Number of Databases)			
OHDSI Data Partner	Anti-VEGF (12)	FQ (17)		
Ajou University Medical Center	-	Completed (2)		
Columbia University Medical Center	Completed (1)	Completed (1)		
IQVIA	-	Completed (5)		
Janssen R&D	Completed (6)	Completed (6)		
Johns Hopkins University	Completed (1)	-		
Northeastern University	Completed (1)	-		
Stanford University	Completed (1)	-		
Taipei Medical University	-	Completed (1)		
University of Southern California	Completed (1)	-		
Department of Veterans Affairs	Completed (1)	Completed (1)		
Yonsei University College of Medicine	-	Completed (1)		