OHDSI Coordinating Center

OHDSI Community Call
Nov. 28, 2023 • 11 am ET
Upcoming Community Calls

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 28</td>
<td>OHDSI Coordinating Center</td>
</tr>
<tr>
<td>Dec. 5</td>
<td>Recent Publications</td>
</tr>
<tr>
<td>Dec. 12</td>
<td>Happy Birthday OHDSI! Where Have We Come In 10 Years, and in 12 Months?</td>
</tr>
<tr>
<td>Dec. 19</td>
<td>Holiday-Themed Goodbye to 2023!</td>
</tr>
</tbody>
</table>
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
Congratulations to the team of Fan Bu, Martijn Schuemie, Akihiko Nishimura, Louisa Smith, Kristin Kostka, Thomas Falconer, Jody-Ann McLeggon, Patrick Ryan, George Hripcsak, and Marc Suchard on the publication of Bayesian safety surveillance with adaptive bias correction in *Statistics in Medicine*.
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
<table>
<thead>
<tr>
<th>Date</th>
<th>Time (ET)</th>
<th>Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>12 pm</td>
<td>Common Data Model Vocabulary Subgroup</td>
</tr>
<tr>
<td>Wednesday</td>
<td>7 am</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>Wednesday</td>
<td>10 am</td>
<td>Surgery and Perioperative Medicine</td>
</tr>
<tr>
<td>Wednesday</td>
<td>4 pm</td>
<td>Vulcan/OHDSI Meeting</td>
</tr>
<tr>
<td>Thursday</td>
<td>9 am</td>
<td>Medical Devices</td>
</tr>
<tr>
<td>Thursday</td>
<td>7 pm</td>
<td>Dentistry</td>
</tr>
<tr>
<td>Friday</td>
<td>9 am</td>
<td>GIS – Geographic Information System General</td>
</tr>
<tr>
<td>Friday</td>
<td>11 am</td>
<td>Clinical Trials</td>
</tr>
<tr>
<td>Monday</td>
<td>10 am</td>
<td>Healthcare Systems Interest Group</td>
</tr>
<tr>
<td>Monday</td>
<td>6 pm</td>
<td>OMOP & FHIR</td>
</tr>
<tr>
<td>Tuesday</td>
<td>9 am</td>
<td>ATLAS & WebAPI</td>
</tr>
<tr>
<td>Tuesday</td>
<td>10 am</td>
<td>Common Data Model</td>
</tr>
</tbody>
</table>
Fan Bu, the soon-to-be Assistant Professor in Biostatistics at the University of Michigan, will be the featured guest at the Dec. 10 (11 am) Career Speaker Series event.

Fan is a leading researcher in OHDSI’s vaccine safety surveillance collaboration with the FDA CBER Best Initiative and has collaborated on several OHDSI network studies.
“OMOP Anywhere”: Daily Updates from EHR Data Leveraging Epic’s Native Tools

Presenters: Mujeeb A Basit, Mereeja Varghese, Aamirah Vadsariya, Bhavini Nayee, Margaret Langley, Ashley Huynh, Jennifer Cai, Donglu Xie, Cindy Kao, Eric Nguyen, Todd Boutte, Shibly Antony, Tammye Garrett, Christoph Lehmann, Duwayne L Willett

METHODS
- Many health systems want to transform their EHR data into the OMOP COMMON数据仓库 so they can participate in valuable OHDSS research studies.
- But needing to create and operate a separate Extract Transform Load (ETL) system can be a substantial barrier.

RESULTS
- Data Dictionary
- OMOP Dictionary
- Epic EMR Dictionary
- Caboodle Dictionary

Any health system on Epic can have their full EHR data transformed into the OMOP common data model and updated nightly.

Take a picture to download the full paper
Open Source Tools and Terminology to Increase Representativeness in OHDSI Data

PRESENTER: Andrew S. Kanter, MPH FACHM FAMIA

INTRO: The Observational Health Data Science and Informatics (OHDSI) network is a global community of open-scientific interdisciplinary stakeholders who collaborate on large scale analytics of health data. It includes users in 80 countries with 450 data sources coming from 41 countries and representing 928 million unique patients. Unfortunately, there is currently little representation from low and middle income countries (LMICs).

METHODS: Using open source "Global Goods for Health," it is possible to stitch together a pipeline for operational health data from EMR into OMOP CDM databases. Key tools include:
- OpenMRS - Open source EMR platform built on a standardized dictionary
- Columbia International eHealth Lab (CIEL) terminology - Open source, LMIC interface terminology of >500 concepts
- Open Concept Lab (OCL) - Open source, cloud-based terminology server

RESULTS:
- OpenMRS implemented in 45 countries, >600 facilities and >5M patients.
- CIEL is a dictionary of choice for OpenMRS and is basis of national health data dictionaries in several countries.
- CIEL is included in Athena for OHDSI and is mapped to standard terminologies in multiple languages.
- OCL provides an open and transparent way to view and incorporate CIEL into OpenMRS and other point of care systems.
- The IAIASAR program in Rwanda demonstrated ETL pathways from OpenMRS and OpenClinic GA to OMOP.

OpenMRS combined with the CIEL concept dictionary is used in >40 Low & Middle Income Countries and can serve as a new data pipeline for OHDSI studies.
Developing phenotypes across pregnant persons and infants: Utilizing pregnancy episode identification and mother-infant linkage algorithms to define outcomes

PRESENTER: Rupa Makadia

INTRODUCTION:
- Identification of adverse pregnancy outcomes including preterm birth, small for gestational age, and congenital malformations is challenged by the ability to accurately phenotype a pregnancy episode and capture coded diagnoses which may appear on the maternal or infant record.
- By combining both pregnancy episode and linkage algorithms, phenotypes can be developed for both pregnant people and infants.
- Few studies have evaluated whether preterm birth can be empirically estimated or how mother-infant linkage may affect this phenotype development process, including when and on whom (mother and/or infant) diagnostic codes occur.

METHODS:
- Database
 - IBM MarketScan® Databases (Commercial Claims (CCAC))
 - Optum® De-Identified Clininformatics® Data Mart Database - Date of Death (DOOD) (Clininformatics)
- Phenotypes & Characterization
 - Utilizing a pregnancy episode identification algorithm and a mother-infant linkage algorithm, we created cohorts in ATLAS for preterm birth, small for gestational age, and major congenital malformations among mother-infant 1-5 year old pairs using diagnostic codes on either mother or infant.
 - Cochran-Mantel-Haenszel was used to evaluate the phenotype algorithms for the frequency of codes, incidence rates, and characterization.
- An additional phenotype for preterm birth was developed using an empirical derivation of pregnant people with live birth deliveries that resulted from gestations of less than 37 weeks (259 days) were identified.

RESULTS:
- Table 1 shows the top 5 SNOMED codes in Clininformatics in a cohort with pregnant people and infants with 1 code for preterm birth. The most common code occurred on infants (32%) and the second most common occurred on mothers at delivery (24%).
- The total number of persons identified by the phenotype and stratified by mother vs. infant is shown in Table 2. When restricted to linked mother-infant pairs, 72% of the infants could be associated with a linked pair where ≥3 preterm code was present. ≥25% occurred only on the infant. ≤10% occurred only on the pregnant person and ≤5% occurred on both records.
- Figure 1 shows the overlap between mothers with live deliveries who had ≥3 preterm birth codes on the mother or infant record and those that had calculated gestations ≤37 weeks. Among ≥7 pregnant people with a live birth outcome, 11% had ≥5 preterm codes estimated to be less than 37 weeks. 30 days of delivery and 62% had birth <37 preterm birth code and a gestation estimated to be less than 37 weeks.

CONCLUSIONS:
- Utilizing the pregnancy identification algorithm to generate an empirical estimation of preterm birth (i.e., ≤37 weeks) and comparing it with the more conventional use of codes highlights a complexity in defining the phenotype.
- The use of a regression-driven approach applied to multiple databases provides confidence that the phenotype algorithms can correctly identify preterm births.

Rupa Makadia, Jill Hardin, Kevin Haynes, Dave Kern, Amir Sarayani, Melanie Jacobson
Refactoring OHDSI cohort queries for performance: lessons from VA study participation

(Benjamin Viernes, Marc A. Suchard, Patrick R. Alba, Katherine R. Simon, Michael E. Matheny, Scott L. DuVall)

SQL code generated by Circe using complex cohort criteria frequently fails to generate cohorts on VA servers, but runs efficiently when refactored to avoid the use of repeated OMOP domain subqueries.
Characteristics Associated with Persistent Opioid Use Following Total Joint Arthroplasty

(Aurora Quaye, Janelle Richard, Henry Stoddard, Robert Krulee, Blaire Beers-Mulroy, Kristin Kostka, John DiPalazzo)

INTRO: Total joint arthroplasties are among the most commonly performed elective surgical procedures in the United States. As a clinically effective intervention that alleviates pain, improves physical function, and quality of life for individuals with end-stage joint arthritis, surgical volume is projected to see continued substantial growth in the ensuing decade. Opioid use is a prominent component of analgesic regimens to treat acute pain following surgery, and patients undergoing these procedures are at risk of persistent postoperative opioid use (A). Long-term opioid use is associated with an increased risk of cardiovascular complications, has been linked to increased total health care costs, and can lead to opioid dependence.2 The economic burden of opioid misuse and misuse following total joint, knee, and shoulder arthroplasty in spinal nerve individuals at our institution. Additionally, we aim to identify the clinical characteristics associated with persistent opioid use to influence the development of predictive models and risk stratification algorithms aimed at preventing persistent opioid use following surgery.

METHODS: After Institutional Review Board approval, we utilized a retrospective observational cohort study design to develop a LASSO logistic regression prediction model with a large, US Electronic Health Record dataset in the Observational Medical Outcomes Partnership (OMOP Converted Data Model [CDM]) format. We included patients that had either a total knee, hip, or shoulder replacement performed at our institution from 12/1/2015-12/31/2020. Patients were included if they were 18 years of age, were opioid naïve—defined as not receiving an opioid prescription in the 365 days prior to surgical encounter and received an opioid prescription on hospital discharge. We excluded patients who had revision arthroplasty, malignant neuropathies excluding non-melanoma skin cancer or death during inpatient hospitalization. Only the first surgical procedure was used for analysis during the study period. Data was analyzed using a 2:1 ratio of test, and an area under the curve (AUC) was considered statistically significant. Analyses were performed using R version 4.1.2.

We used 10-fold cross-validation on a 70% training data set to select the optimal LASSO regression model, as well as the optimal number of features selected on a positive and negative outcome predictions. We then used a 25% testing data set to assess the model’s performance. Our final model had a threshold of 0.55 for positive calculation, i.e., the model gave a patient a negative-outcome probability greater than the threshold, the calculated outcome was negative. The overall model performance was evaluated using an ROC curve (Figure 2) which showed sensitivity of 0.762 and specificity of 0.594, and an Area Under the Curve (AUC) of 0.702.

RESULTS: 4,081 patients met inclusion criteria and 1,521 had persistent opioid use over the one-year post-surgery (Table 1). Presence of patients discharged during the study period. Predictors of persistent use were associated with age, sex, or duration. Persistent opioid use was most strongly associated with history of substance abuse (OR: 20.1), non-smoking (OR: 2.94), and antidepressant use (OR: 1.36). Other significant variables with lower associated model coefficients include diabetes, chronic, systemic, liver disease, chronic lung disease, depression, ASA score ≥ 4, previous opioid use, and opioid use following surgery (Table 2). Overall, the surgical procedures examined, total knee replacement surgery (OR 2.31) had the highest likelihood of persistent opioid use. Postoperative inpatient length of stay of at least 30, BMI > 35, and ASA score of at least 4 were protective against persistent use.

CHARACTERISTICS ASSOCIATED WITH PERSISTENT OPIOID USE FOLLOWING TOTAL JOINT ARTHROPLASTY

Characteristics

Associated with Persistent Opioid Use Following Total Joint Arthroplasty

Robert Krulee

INTRO: Total joint arthroplasties are among the most commonly performed elective surgical procedures in the United States. As a clinically effective intervention that alleviates pain, improves physical function, and quality of life for individuals with end-stage joint arthritis, surgical volume is projected to see continued substantial growth in the ensuing decade. Opioid use is a prominent component of analgesic regimens to treat acute pain following surgery, and patients undergoing these procedures are at risk of persistent postoperative opioid use (A). Long-term opioid use is associated with an increased risk of cardiovascular complications, has been linked to increased total health care costs, and can lead to opioid dependence.2 The economic burden of opioid misuse and misuse following total joint, knee, and shoulder arthroplasty in spinal nerve individuals at our institution. Additionally, we aim to identify the clinical characteristics associated with persistent opioid use to influence the development of predictive models and risk stratification algorithms aimed at preventing persistent opioid use following surgery.

METHODS: After Institutional Review Board approval, we utilized a retrospective observational cohort study design to develop a LASSO logistic regression prediction model with a large, US Electronic Health Record dataset in the Observational Medical Outcomes Partnership (OMOP Converted Data Model [CDM]) format. We included patients that had either a total knee, hip, or shoulder replacement performed at our institution from 12/1/2015-12/31/2020. Patients were included if they were 18 years of age, were opioid naïve—defined as not receiving an opioid prescription in the 365 days prior to surgical encounter and received an opioid prescription on hospital discharge. We excluded patients who had revision arthroplasty, malignant neuropathies excluding non-melanoma skin cancer or death during inpatient hospitalization. Only the first surgical procedure was used for analysis during the study period. Data was analyzed using a 2:1 ratio of test, and an area under the curve (AUC) was considered statistically significant. Analyses were performed using R version 4.1.2.

We used 10-fold cross-validation on a 70% training data set to select the optimal LASSO regression model, as well as the optimal number of features selected on a positive and negative outcome predictions. We then used a 25% testing data set to assess the model’s performance. Our final model had a threshold of 0.55 for positive calculation, i.e., the model gave a patient a negative-outcome probability greater than the threshold, the calculated outcome was negative. The overall model performance was evaluated using an ROC curve (Figure 2) which showed sensitivity of 0.762 and specificity of 0.594, and an Area Under the Curve (AUC) of 0.702.

RESULTS: 4,081 patients met inclusion criteria and 1,521 had persistent opioid use over the one-year post-surgery (Table 1). Presence of patients discharged during the study period. Predictors of persistent use were associated with age, sex, or duration. Persistent opioid use was most strongly associated with history of substance abuse (OR: 20.1), non-smoking (OR: 2.94), and antidepressant use (OR: 1.36). Other significant variables with lower associated model coefficients include diabetes, chronic, systemic, liver disease, chronic lung disease, depression, ASA score ≥ 4, previous opioid use, and opioid use following surgery (Table 2). Overall, the surgical procedures examined, total knee replacement surgery (OR 2.31) had the highest likelihood of persistent opioid use. Postoperative inpatient length of stay of at least 30, BMI > 35, and ASA score of at least 4 were protective against persistent use.

CHARACTERISTICS ASSOCIATED WITH PERSISTENT OPIOID USE FOLLOWING TOTAL JOINT ARTHROPLASTY

Characteristics

Associated with Persistent Opioid Use Following Total Joint Arthroplasty

Robert Krulee

INTRO: Total joint arthroplasties are among the most commonly performed elective surgical procedures in the United States. As a clinically effective intervention that alleviates pain, improves physical function, and quality of life for individuals with end-stage joint arthritis, surgical volume is projected to see continued substantial growth in the ensuing decade. Opioid use is a prominent component of analgesic regimens to treat acute pain following surgery, and patients undergoing these procedures are at risk of persistent postoperative opioid use (A). Long-term opioid use is associated with an increased risk of cardiovascular complications, has been linked to increased total health care costs, and can lead to opioid dependence.2 The economic burden of opioid misuse and misuse following total joint, knee, and shoulder arthroplasty in spinal nerve individuals at our institution. Additionally, we aim to identify the clinical characteristics associated with persistent opioid use to influence the development of predictive models and risk stratification algorithms aimed at preventing persistent opioid use following surgery.

METHODS: After Institutional Review Board approval, we utilized a retrospective observational cohort study design to develop a LASSO logistic regression prediction model with a large, US Electronic Health Record dataset in the Observational Medical Outcomes Partnership (OMOP Converted Data Model [CDM]) format. We included patients that had either a total knee, hip, or shoulder replacement performed at our institution from 12/1/2015-12/31/2020. Patients were included if they were 18 years of age, were opioid naïve—defined as not receiving an opioid prescription in the 365 days prior to surgical encounter and received an opioid prescription on hospital discharge. We excluded patients who had revision arthroplasty, malignant neuropathies excluding non-melanoma skin cancer or death during inpatient hospitalization. Only the first surgical procedure was used for analysis during the study period. Data was analyzed using a 2:1 ratio of test, and an area under the curve (AUC) was considered statistically significant. Analyses were performed using R version 4.1.2.

We used 10-fold cross-validation on a 70% training data set to select the optimal LASSO regression model, as well as the optimal number of features selected on a positive and negative outcome predictions. We then used a 25% testing data set to assess the model’s performance. Our final model had a threshold of 0.55 for positive calculation, i.e., the model gave a patient a negative-outcome probability greater than the threshold, the calculated outcome was negative. The overall model performance was evaluated using an ROC curve (Figure 2) which showed sensitivity of 0.762 and specificity of 0.594, and an Area Under the Curve (AUC) of 0.702.
OHDSI HADES releases: FeatureExtraction 3.3.2

FeatureExtraction

FeatureExtraction is part of HADES.

Introduction

An R package for generating features (covariates) for a cohort using data in the Common Data Model.

Features

- Takes a cohort as input.
- Generates baseline features for that cohort.
- Default covariates include all drugs, diagnoses, procedures, as well as age, comorbidity indexes, etc.
- Support for creating custom covariates.
- Generate paper-ready summary table of select population characteristics.

Technology

License

Apache License 2.0

Citation

Citing FeatureExtraction

Developers

Martijn Schuemie
Author

Marc Suchard
Author

Patrick Ryan
Author

Jenna Reps
Author

Links

Browse source code
Report a bug
Ask a question
Andromeda

Introduction

AsynchrOUns Disk-based Representation of MassivE Data (ANDROMEDA): An R package for storing large data objects. Andromeda allows storing data objects on a local drive, while still making it possible to manipulate the data in an efficient manner.

Features

- Allows storage of data objects much larger than what can fit in memory.
- Integrates with dplyr package for data manipulation.
- Objects are stored in a temporary location on the local file system.
- Ability to save and load the objects to a compressed file in a permanent location on the local file system.

Examples
The 2023 OHDSI Global Symposium welcomed more than 40% of our global collaborators together for three days of sharing research, forging new connections and pushing forward the OHDSI mission of improving health by empowering a community to collaboratively generate evidence to promote better health decisions and better care.

This page will be home to all materials from the global symposium. Check back in the coming days for all video presentations from the event.

#JoinTheJourney OHDSI2023

Global Symposium Homepage

2023 OHDSI Symposium
Oct. 20-22 • East Brunswick, New Jersey

The 2023 OHDSI Global Symposium welcomed more than 40% of our global collaborators together for three days of sharing research, forging new connections and pushing forward the OHDSI mission of improving health by empowering a community to collaboratively generate evidence to promote better health decisions and better care.

This page will be home to all materials from the global symposium. Check back in the coming days for all video presentations from the event.

#JoinTheJourney OHDSI2023

State of the Community

Various leaders within OHDSI shared a presentation on the state of the community, with specific focus on data standards, vocabulary enhancements and open-source development. Speakers included:

George Hripcsak, Columbia University
Clerc Blackman, Johnson & Johnson
Alexander Dixey, Odyssey Data Services
Katy Sadowski, Bouts pracę Shoulder
Peter Rippek, Etsuka MC
Mengling ‘Marnie’ Peng, National University of Singapore

State of the Community Slides

2023 OHDSI Showcase Poster & Software Demos

A recent number of submissions for the 2023 Collaborator... join the journey, ohdsi.org/ohdsi2023

Tutorial: Introduction to OHDSI

Survey from data to evidence can be challenging alone but is greatly enhanced through community collaboration. In this half-day tutorial, we will introduce newcomers to OHDSI. Specifically, about the tools, practices, and open-source approach to evidence generation that the OHDSI community has developed and evolved over the past decade.

Faculty will highlight the ways community individuals can participate as well as receive value from the community’s output. The course will include topics such as open community data standards — including the OHDSI Common Data Model and OHDSI Standardized Vocabularies, open-source analytic tools

@OHDSI
www.ohdsi.org
#JoinTheJourney OHDSI2023

2023 Global Collaborator Showcase

Observational Data Standards & Management

- FindCMOP - a tag-based data network (Javier Garcia-Tahonera, Pernia Koikoski, Pia Tajirman, Sanae Kukushkin, Gusto Klingberg, Anna Hermann, Penelope Dogg, Oscar Black, Hanna Lalekre, Anna Kall, Marco Hausser, Tori Black, Birgitta Hart, Pavel Kofal, Zdenko Kysel, Anna Walis, Anna Kall, Marco Hausser, Tori Black, Birgitta Hart, Pavel Kofal, Zdenko Kysel, Anna Walis)

- JoinCMOP to DECM, RESU, Surocience, Palmedics, and other Collaborators (Pia Tajirman, Pernia Koikoski, Sanae Kukushkin, Gusto Klingberg, Anna Hermann, Penelope Dogg, Oscar Black, Hanna Lalekre, Anna Kall, Marco Hausser, Tori Black, Birgitta Hart, Pavel Kofal, Zdenko Kysel, Anna Walis)

- Accelerating the OHDSI Common Data Model (CDM) across various medical specialties (Jason Krill, Jeremy Keller, and the CDM Acceleration Team)

- Clinical and research application of the OHDSI CDM (Young-Joon Kim, Heeyoung Kim, Sung-Joo Kim, Sung-Hwi Park, Sung-Ju Park)

- Development of a cognitive image data exploration platform for imaging-based observational research: OHDSI CDM Image Data Module Extension (Woo Yeun Park, Jiyoung Jeong, Hyeon-Seok Kim, Dong-Hyun Kim, Eun-Joo Yoon, Na Young Kim)

- Development of a mini-Clinical Phenotype Repository using a Common Data Model (CDM) Curation (Yuki Koyama, Tomohiro Nishino, Hiroaki Kato, and the CDM Curation Team)

- OHDSI Curation: a common data model in neurology: Comparison of several a priori extraction algorithms to standard OHDSI concepts across European EMR studies (M. C. Oosten, Willem Malte, Freda L. Baker, Bertil Bickel C. To)

- Enhancing Data Quality Management: Introducing Guarantee and Consent Notes to the Data Quality Dashboard (Frank DeFelice, Clar Blomster)

- OHDSI Curation: sharing OHDSI data from EMR data management (Ash Small, A. Bilal, Andrew Ailstock, Aarushi Hasija, Bhuvan Pratap, Meena Vyas, Aashish Dhanak, Mark K. Smith)

- A laser focus for the OHDSI CDM (Akihiko Tsuchiya, Kohta Kagami, Tatsuya Hanada, Chiharu Fujimoto, Satoshi Yajima, Tetsuya Saito, Shinsuke Hara, Ryo Akiyama, Ryo Akiyama, Ryo Akiyama, Ryo Akiyama)

- Collaborative and opportunities in assessing OHDSI CDM in a radiofrequency ablation: a report from hospital records at Albert Einstein, Mina Andrade, Liliana Piris-Pardo, Dante de Lima Fernandes, Diego Teixeira, Ana Carolina Gomes Robles, Cesar Augusto Mello Thays, Gabrielle Chufflesx Taner, Juma Daout, Gabriel Mesquita de Souza, Romeu da Silva Jardim, Adilson Jose Pereira, Ethel Amaro)

- Transforming the OHDSI Enriched Demographic module to OHDSI CDM (Samantha Zlonicka, Claire Blackstoner)

- Variability in OHDSI Curation Data to OHDSI CDM (John Martin, Mary Lin)

- Development of a web-based data model (CDM-CV) with observational data: CDM-CV (Jin Lee, Changho Kang, Xie Wanning Poo, Xie Wanning Poo, Xie Wanning Poo)

- OHDSI Curation: Curation Demos on the Curation web-based workbench and Curation tool (Leticia Mroz, Jennifer Mroz, Jennifer Mroz, Jennifer Mroz)

- OHDSI Curation: a common data model in neurology: Comparison of several a priori extraction algorithms to standard OHDSI concepts across European EMR studies (M. C. Oosten, Willem Malte, Freda L. Baker, Bertil Bickel C. To)

- OHDSI Curation: sharing OHDSI data from EMR data management (Ash Small, A. Bilal, Andrew Ailstock, Aarushi Hasija, Bhuvan Pratap, Meena Vyas, Aashish Dhanak, Mark K. Smith)

- A laser focus for the OHDSI CDM (Akihiko Tsuchiya, Kohta Kagami, Tatsuya Hanada, Chiharu Fujimoto, Satoshi Yajima, Tetsuya Saito, Shinsuke Hara, Ryo Akiyama, Ryo Akiyama, Ryo Akiyama)

- Collaborative and opportunities in assessing OHDSI CDM in a radiofrequency ablation: a report from hospital records at Albert Einstein, Mina Andrade, Liliana Piris-Pardo, Dante de Lima Fernandes, Diego Teixeira, Ana Carolina Gomes Robles, Cesar Augusto Mello Thays, Gabrielle Chufflesx Taner, Juma Daout, Gabriel Mesquita de Souza, Romeu da Silva Jardim, Adilson Jose Pereira, Ethel Amaro)

- Transforming the OHDSI Enriched Demographic module to OHDSI CDM (Samantha Zlonicka, Claire Blackstoner)

- Variability in OHDSI Curation Data to OHDSI CDM (John Martin, Mary Lin)

- Development of a web-based data model (CDM-CV) with observational data: CDM-CV (Jin Lee, Changho Kang, Xie Wanning Poo, Xie Wanning Poo, Xie Wanning Poo)

- OHDSI Curation: Curation Demos on the Curation web-based workbench and Curation tool (Leticia Mroz, Jennifer Mroz, Jennifer Mroz, Jennifer Mroz)

- OHDSI Curation: a common data model in neurology: Comparison of several a priori extraction algorithms to standard OHDSI concepts across European EMR studies (M. C. Oosten, Willem Malte, Freda L. Baker, Bertil Bickel C. To)

- OHDSI Curation: sharing OHDSI data from EMR data management (Ash Small, A. Bilal, Andrew Ailstock, Aarushi Hasija, Bhuvan Pratap, Meena Vyas, Aashish Dhanak, Mark K. Smith)

- A laser focus for the OHDSI CDM (Akihiko Tsuchiya, Kohta Kagami, Tatsuya Hanada, Chiharu Fujimoto, Satoshi Yajima, Tetsuya Saito, Shinsuke Hara, Ryo Akiyama, Ryo Akiyama, Ryo Akiyama)

- Collaborative and opportunities in assessing OHDSI CDM in a radiofrequency ablation: a report from hospital records at Albert Einstein, Mina Andrade, Liliana Piris-Pardo, Dante de Lima Fernandes, Diego Teixeira, Ana Carolina Gomes Robles, Cesar Augusto Mello Thays, Gabrielle Chufflesx Taner, Juma Daout, Gabriel Mesquita de Souza, Romeu da Silva Jardim, Adilson Jose Pereira, Ethel Amaro)

- Transforming the OHDSI Enriched Demographic module to OHDSI CDM (Samantha Zlonicka, Claire Blackstoner)

- Variability in OHDSI Curation Data to OHDSI CDM (John Martin, Mary Lin)

- Development of a web-based data model (CDM-CV) with observational data: CDM-CV (Jin Lee, Changho Kang, Xie Wanning Poo, Xie Wanning Poo, Xie Wanning Poo)

- OHDSI Curation: Curation Demos on the Curation web-based workbench and Curation tool (Leticia Mroz, Jennifer Mroz, Jennifer Mroz, Jennifer Mroz)
Opening: Limerick Digital Cancer Research Centre

Job Spec

Advertisement/Information for Applicants

Please click on Information for Applicants/Job Description link below for full job

Post Doctoral Researcher (Level 1 or 2) in Cancer Digital Health Real World Evidence (2 Positions)

With over 18,000 students and 2,600 members of staff, the University of Limerick (UL) is an energetic, research led and

*bold*enthusiastic institution with a proud record in innovation and excellence in education, research and scholarship. The dynamic, entrepreneurial and pioneering values which drive UL's mission and strategy ensure that we capitalise on local, national and international engagement and connectivity. We are renowned for providing an outstanding student experience and conducting leading-edge research. Our commitment is to make a difference by shaping the future through educating and empowering our students.

With the River Shannon as a unifying focal point, UL is situated on a superb riverside campus of over 130 hectares. Outstanding recreational, cultural and sporting facilities further enhance the campus’s exceptional learning and research environment.

Applications are invited for the following position:

Faculty of Education & Health Sciences

School of Medicine

Post Doctoral Researcher (Level 1 or 2) in Cancer Digital Health Real World Evidence (2 Positions) Specific Purpose Contract

Salary Scales: PD1 €42,033 – €48,427 p.a. pro rata

PD2 €49,799 – €54,153 p.a. pro rata

Informal enquiries regarding the post may be directed to:

Professor Aidan Cohan

School of Medicine

University of Limerick

Email: aidan.cohan@ul.ie

"This is a professional training and development role and the training and development relevant to this position will be completed within the period of the contract. Postdoctoral Researchers appointed will be expected to complete the Researcher Career Development Programme."

The closing date for receipt of applications is Friday, 13th December 2023.

Applications must be completed online before 12 noon, Irish Standard Time on the closing date.

The University of Limerick supports blended working
Openings: Bill and Melinda Gates Foundation

Distinguished Scientist, Artificial Intelligence & Large Language Models

Deputy Director, Quantitative Sciences
Job Opening: Stanford University

Open Postdoctoral position, faculty mentor Brian Bateman

Our research team is looking for a postdoctoral scholar in perinatal pharmacoepidemiology. The scholar will work closely with Drs. Brian Bateman and Stephanie Leonard on NIH-funded research projects on the comparative safety and effectiveness of medications in pregnancy and related research topics. Our projects employ advanced analytical methods in large databases, which include claims data and electronic health record data in conventional structures and in common data models. Current topical focus areas include mental health, behavioral health and cardiovascular health of people who are pregnant or postpartum.

Our research group prioritizes a collaborative and inclusive team environment. The principal investigators are experienced mentors who are highly committed to supporting the postdoctoral scholar in advancing their career as a future independent investigator.
Call for frequency of LOINC codes in your data

Vocabulary Users

zhuk Oleg Zhuk

In OMOP vocabularies, SNOMED and LOINC are two foundations of the Measurement domain.

Many measurements or Lab tests exist in both Snomed and LOINC and can be chosen during ETL. They are similar to each other, but not identical, typically LOINC is much more granular than SNOMED. Given the differences in the granularity of the concepts, it is impossible to build simple horizontal 'Maps to' relationships in most cases. To harmonize the two vocabularies, we instead started creating a hierarchy, where LOINC concepts are descendants of SNOMED. This will support the analytical use case of selecting a whole group of lab tests by picking only one top-level concept, like what we have in Conditions or Procedures.

The problem is - there are thousands of LOINC codes. To prioritise our work, we need to know LOINCs that are used in the data more often. Therefore, we ask you to calculate some numbers for us.

Please use the scripts below to calculate frequency of LOINC codes in your data (SQL and R adaptation, connection details should be modified in R script). Share the counts here or in PM if you have trouble attaching documents to forum posts.

► SQL
► R code

Thank you for your collaboration!
Where Are We Going?

Any other announcements of upcoming work, events, deadlines, etc?
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
Hall ES, Melton GB, Payne PRO, Dorr DA, Vawdrey DK. How are leading research institutions engaging with data sharing tools and programs? 2023 AMIA Symposium.