APAC Community Call
APAC 2023 Recap/Year Closing

December 14, 2023
Agenda

- OHDSI APAC 2023 Recap
- Regional Chapter Year-End Updates
OHDSI APAC 2023 Recap

Mui Van Zandt
7 regional chapters in APAC since 2014

104 OMOP data sources from 8 APAC countries
2023 OHDSI APAC Goals

Research

Build research expertise and collaboration amongst the different chapters through publication

Training

Create an APAC training program to expand reach to the general community

Communication

Create collaboration activities that encourage collaborative generation and dissemination of the evidence that promotes better health decisions and better care
36 publications so far from APAC, including 2 multi-center publications in *JAMA*.
APAC Scientific Forum

10 Monthly Meetings
To foster a collaborative environment for APAC researchers and host sessions on topics of community’s high-interest:
- ✓ OMOP Standardized Vocabularies
- ✓ Community contribution guidelines to OMOP Standardized Vocabularies

8 Invited Speakers
To promote and provide updates on their studies, and gauge community’s interest to participate

6 Training Sessions
Hosted by different regional chapters to share knowledge and engage newcomers to the community
Save Our Sisyphus (SOS) Challenge

<table>
<thead>
<tr>
<th>Research Questions</th>
<th>Weekly Tutorials</th>
<th>Important Lesson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted by the OHDSI community</td>
<td>Taught by global subject matter experts in two time zones to accommodate the entire global community</td>
<td>Panel discussion with regulator, clinician, researcher, and consumer representatives triggered a critical debate on how we as a research community should best convey our findings to the general public</td>
</tr>
<tr>
<td>35 Studies</td>
<td>9 Weekly Tutorials</td>
<td>1 Important Lesson</td>
</tr>
<tr>
<td>Selected to be designed, implemented, executed and disseminated by the community as a whole</td>
<td>From study conception to fruition, enabling presentation of preliminary study results at the APAC Symposium</td>
<td></td>
</tr>
<tr>
<td>1 Study Led by APAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is fluoroquinolone use really associated with the development of aortic aneurysms? led by Korea and Australia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2023 APAC Symposium
✓ 2-day in-person event hosted in Sydney, Australia
✓ 110 attendees from around the world represented by all stakeholder groups including consumer!

2023 China Symposium
✓ 4-day in-person event hosted in Shanghai, China consisting of main conference and tutorials
✓ China regional experts from all disciplinary areas
Community Communication

2023 Q3 APAC Newsletter

This sixth edition of the OHDSI APAC Newsletter features APAC study news, upcoming events, and more!

OHDSI APAC JoinTheJourney

4 Quarterly Newsletters

10 Monthly Community Calls

Nov. 18, 2023 - Global Symposium Recap/Training Session #6

Sept. 21, 2023 - Training Session #5

Aug. 17, 2023 - Symposium Reviews, India Chapter Update & More

June 15, 2023 - Regional Mid-Year Updates

May 18, 2023 - Training Session #4: A*STAR Data Vault: a research platform for the Singapore ecosystem and beyond

Apr. 20, 2023 - SOS Challenge Tutorials Recap

Mar. 16, 2023 - Conducting comparative effectiveness study using Cohort Playbook (Sliding Windows, Daniel Kim)

Feb. 16, 2023 - Training Session: How to utilize Cohort Playbook (strong, flexible definitions (Xiaoyu Lin))

Jan. 19, 2023 - APAC Kickoff, Future Challenges 2023

Where Have We Been?

• One of our main goals for 2023 is to ensure our collaboration continues to thrive and grow. We are excited about the potential for increased partnerships and sharing of knowledge.
• Under the leadership of our new steering committee, we are working to create a more inclusive and vibrant APAC community.
• A few of the upcoming events we are excited about include our Virtual Summit and the OHDSI APAC Conference. We hope to see you there!

Where Have We Gone?

• There are two main challenges we are facing in our community:
 • Developing more engagement and networking opportunities for our members
 • Ensuring that our community is inclusive and accessible to everyone

The steering committee has been working hard to address these challenges and we are confident that we will continue to make progress in 2023.

4 Quarterly Newsletters

10 Monthly Community Calls

OHDSI APAC JoinTheJourney

Community Communication
Community Recognition

2023 Titan Awards

Nicole Pratt
Community Leadership

Gyeol Song
Community Support

2 out of total 7 Titan Awards
Regional Chapter Year-End Updates
• **Objective 1:** Promote OHDSI strategy and methodology in China

• **Objective 2:** Create collaboration activities that encourage collaborative research among healthcare institutions in China
Monthly Lectures

• 2/18 Mengling Feng, NUS, When Healthcare Meets AI and Data Standardization

• 3/11 Hua Xu, Yale, Representing and Utilizing Clinical Textual Data for RWS: An OHDSI Approach

• 4/15 Biyun Qian, Shanghai Hospital Development Center, Construction and Practice of Shanghai Digitalized Platform for Clinical Research

• 5/20 Shan Nan, University of Hunan, Rapid Construction of a Clinical Decision Support System based on OpenEHR

• 6/24 Yonghui Wu, University of Florida, Large GPT Models in Medicine

• 8/19 Yanshan Wang, University of Pittsburg, Generative AI Inspires Infrastructure Construction of Medical Big Data

• 10/28 Guangjun Yu, Hongkong Chinese University (Shenzhen), Construction of Rare Diseases Database
大会部分阵容

大会邀请美国、新加坡、中国香港等国内外顶尖专家学者，设置多场主题报告及专家教学研讨会，邀请各方专家分享该领域的前沿知识及经验。

刘 明
复旦大学附属中山医院

吕 晖
上海交通大学生命科学技术与生物信息学系教授

周 悦
华中科技大学

徐 华
Assistant Dean for Biomedical Informatics, Yale School of Medicine

赵 宏志
复旦大学附属中山医院

刘 云
江苏省人民医院院长

于 广文
香港中文大学（深圳）医学院副院长

唐 金陵
深圳理工大学数据科学学院

Mengling ‘Mornin’ Feng
新加坡国立大学助理教授

Mui Van Zandt
VP/Global Head, Data Strategy, Access & Enablement, IQVIA

参会对象

国内各大高校专家学者、各类医疗卫生机构医学信息化相关从业人员、医学科研人员及医疗行业对该领域感兴趣的工作人员、医学院学生等。

主办单位

OHDSI CHINA · 复旦大学智能医学研究院 · 上海市生物信息学会

协办单位

上海交大附属瑞金医院数据科学中心 · 中山大学中山医学院
1. Construct Private Computing Platform in Each Hospital
 • Data collection and cleaning of specific diseases
2. Form Data Network and Data Sharing
 • Policy for authorized data sharing
3. Form Clinical Research Network for Specific Diseases
Members in OHDSI Taiwan Society Office

Marc Hsu
Jason C. Hsu
Alex PA. Nguyen
Grace Huang
Benson Cheng
Phan Thanh Phuc
Yudha E. Saputra
Maz Solie
Whitney Burton
Rachel Quynh
Dian Tri
Septi Melisa
Christianus
Heru Set
Daniel Chris
Natalie
Carrie
Nina
Sunny
OHDSI Taiwan Society Activity
Promotion of OHDSI network
OHDSI Taiwan Society Activity

Co-organize the conference with other organizations

Health big data seminar at Chiayi Christian Hospital
May 4th 2023

OHDSI Taiwan Society Activity

Co-organize the conference with other organizations

Digital Health Cross-Domain Innovation Exchange Conference
June 18th 2023

OHDSI Taiwan Society Activity

OHDSI Educational Training in Taiwan

Nicole Pratt (Australia)
Mengling Feng (Singapore)
Seng Chan You (Korea)
Yong Chen (USA)
Implementing OHDSI OMOP CDM in Hsin Kuo Min Hospital

Sep 13th 2023
Host OHDSI Community Call

OHDSI Taiwan Study Presentation

Estimating Adverse Cardiovascular-Related Events After Hormone Therapy Treatment in Three Female Cancer Populations

Whitney Burton, Caoymh Nguyen, Septi Melissa, Mohammad Solehuddin Muhtar, & Jason Hou
Join OHDSI APAC Symposium (Australia)
Join OHDSI Global Symposium (USA)
Participate in the international collaboration project on Ranitidine
Support OHDSI Vietnam Chapter
Welcome to visit our OHDSI Taiwan Website

www.OHDSI-Taiwan.com
Thanks for your listening!
CDM Data Network in Korea

Data Network of 63 Hospitals (79M patients), 3 National Claims

> 80% of Tertiary Teaching Hospitals
<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Data Partner (Eng)</th>
<th>Type of Data</th>
<th># Unique Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gachon University Gil Medical Center</td>
<td>EHR</td>
<td>1,709,983</td>
</tr>
<tr>
<td>2</td>
<td>The Catholic University of Korea, Seoul ST. Mary’s Hospital</td>
<td>EHR</td>
<td>3,212,915</td>
</tr>
<tr>
<td>3</td>
<td>The Catholic University of Korea, Yeouido ST. Mary’s Hospital</td>
<td>EHR</td>
<td>2,279,292</td>
</tr>
<tr>
<td>4</td>
<td>The Catholic University of Korea, Uijeongbu ST. Mary’s Hospital</td>
<td>EHR</td>
<td>961,049</td>
</tr>
<tr>
<td>5</td>
<td>The Catholic University of Korea, ST. Vincent’s Hospital</td>
<td>EHR</td>
<td>1,102,630</td>
</tr>
<tr>
<td>6</td>
<td>Gangnam Severance Hospital</td>
<td>EHR</td>
<td>1,661,794</td>
</tr>
<tr>
<td>7</td>
<td>Kyung Hee University Hospital At Gangdong</td>
<td>EHR</td>
<td>810,031</td>
</tr>
<tr>
<td>8</td>
<td>Kangdong Sacred Heart Hospital</td>
<td>EHR</td>
<td>1,194,685</td>
</tr>
<tr>
<td>9</td>
<td>Kangbuk Samsung Hospital</td>
<td>EHR</td>
<td>1,472,253</td>
</tr>
<tr>
<td>10</td>
<td>Gangneung Asan Hospital</td>
<td>EHR</td>
<td>915,643</td>
</tr>
<tr>
<td>11</td>
<td>Kangwon National University Hospital</td>
<td>EHR</td>
<td>553,708</td>
</tr>
<tr>
<td>12</td>
<td>Konkuk University Medical Center</td>
<td>EHR</td>
<td>1,063,104</td>
</tr>
<tr>
<td>13</td>
<td>Konyang University Hospital</td>
<td>EHR</td>
<td>555,005</td>
</tr>
<tr>
<td>14</td>
<td>Kyungpook national university hospital</td>
<td>EHR</td>
<td>1,324,716</td>
</tr>
<tr>
<td>15</td>
<td>Gyeongsang National University Hospital</td>
<td>EHR</td>
<td>626,663</td>
</tr>
<tr>
<td>16</td>
<td>Kyung Hee University Medical Center</td>
<td>EHR</td>
<td>1,168,640</td>
</tr>
<tr>
<td>17</td>
<td>Korea University Guro Hospital</td>
<td>EHR</td>
<td>2,106,320</td>
</tr>
<tr>
<td>18</td>
<td>Korea University Ansan Hospital</td>
<td>EHR</td>
<td>1,537,665</td>
</tr>
<tr>
<td>19</td>
<td>Korea University Anam Hospital</td>
<td>EHR</td>
<td>1,891,753</td>
</tr>
<tr>
<td>20</td>
<td>National Cancer Center</td>
<td>EHR</td>
<td>103,573</td>
</tr>
<tr>
<td>21</td>
<td>National Health Insurance Service Ilsan Hospital</td>
<td>EHR</td>
<td>1,427,424</td>
</tr>
<tr>
<td>22</td>
<td>Catholic Kwandong University International ST. Mary’s Hospital</td>
<td>EHR</td>
<td>403,989</td>
</tr>
<tr>
<td>23</td>
<td>Dankook University Hospital</td>
<td>EHR</td>
<td>1,153,345</td>
</tr>
<tr>
<td>24</td>
<td>Daegu Catholic University Medical Center</td>
<td>EHR</td>
<td>906,587</td>
</tr>
<tr>
<td>25</td>
<td>Dongguk University Medical Center</td>
<td>EHR</td>
<td>695,280</td>
</tr>
<tr>
<td>26</td>
<td>Myongji Hospital</td>
<td>EHR</td>
<td>882,646</td>
</tr>
<tr>
<td>27</td>
<td>Myongji Hospital (Jecheon)</td>
<td>EHR</td>
<td>219,574</td>
</tr>
<tr>
<td>28</td>
<td>Pusan National University Hospital</td>
<td>EHR</td>
<td>791,935</td>
</tr>
<tr>
<td>29</td>
<td>Bucheon Sejong Hospital</td>
<td>EHR</td>
<td>416,686</td>
</tr>
<tr>
<td>30</td>
<td>Seoul National University Bundang Hospital</td>
<td>EHR</td>
<td>2,006,000</td>
</tr>
<tr>
<td>31</td>
<td>Cha University Bundang Medical Center</td>
<td>EHR</td>
<td>2,363,386</td>
</tr>
<tr>
<td>32</td>
<td>samsungmedical Center</td>
<td>EHR</td>
<td>3,575,923</td>
</tr>
<tr>
<td>33</td>
<td>Seoul National University Hospital</td>
<td>EHR</td>
<td>3,240,850</td>
</tr>
<tr>
<td>34</td>
<td>Asan Medical Center</td>
<td>EHR</td>
<td>4,896,016</td>
</tr>
<tr>
<td>35</td>
<td>Chungnam National University Sejong Hospital</td>
<td>EHR</td>
<td>94,562</td>
</tr>
<tr>
<td>36</td>
<td>Soochungng University Hospital (Gumi)</td>
<td>EHR</td>
<td>632,252</td>
</tr>
<tr>
<td>37</td>
<td>Soochungng University Hospital (Bucheon)</td>
<td>EHR</td>
<td>1,301,117</td>
</tr>
<tr>
<td>38</td>
<td>Soochungng University Hospital(Seoul)</td>
<td>EHR</td>
<td>1,098,041</td>
</tr>
<tr>
<td>39</td>
<td>Soochungng University Hospital (Chonan)</td>
<td>EHR</td>
<td>987,701</td>
</tr>
<tr>
<td>40</td>
<td>Ajou University Hospital</td>
<td>EHR</td>
<td>2,873,443</td>
</tr>
<tr>
<td>41</td>
<td>Severance Hospital</td>
<td>EHR</td>
<td>3,605,088</td>
</tr>
<tr>
<td>42</td>
<td>Wonju Severance Christian Hospital</td>
<td>EHR</td>
<td>1,050,538</td>
</tr>
<tr>
<td>43</td>
<td>Yongin Severance Hospital</td>
<td>EHR</td>
<td>291,349</td>
</tr>
<tr>
<td>44</td>
<td>Ilsan University Hospital</td>
<td>EHR</td>
<td>400,609</td>
</tr>
<tr>
<td>45</td>
<td>Wonkwng University Hospital</td>
<td>EHR</td>
<td>837,461</td>
</tr>
<tr>
<td>46</td>
<td>Ewha Womans University Medical Center (Mokdong)</td>
<td>EHR</td>
<td>1,667,671</td>
</tr>
<tr>
<td>47</td>
<td>Ewha Womans University Medical Center (Seoul)</td>
<td>EHR</td>
<td>219,834</td>
</tr>
<tr>
<td>48</td>
<td>Incheon Sejong Hospital</td>
<td>EHR</td>
<td>1,978,186</td>
</tr>
<tr>
<td>49</td>
<td>Inha University Hospital</td>
<td>EHR</td>
<td>1,802,241</td>
</tr>
<tr>
<td>50</td>
<td>Chonnan National University Hospital</td>
<td>EHR</td>
<td>1,466,713</td>
</tr>
<tr>
<td>51</td>
<td>Jeonbuk National University Hospital</td>
<td>EHR</td>
<td>286,642</td>
</tr>
<tr>
<td>52</td>
<td>Gyeongsang National University Changwon Hospital</td>
<td>EHR</td>
<td>645,922</td>
</tr>
<tr>
<td>53</td>
<td>Chungnam National University Hospital</td>
<td>EHR</td>
<td>642,572</td>
</tr>
<tr>
<td>54</td>
<td>Kyungpook National University Chilgok Hospital</td>
<td>EHR</td>
<td>487,965</td>
</tr>
<tr>
<td>55</td>
<td>Korea Institute of Radiological & Medical Sciences</td>
<td>EHR</td>
<td>1,783,111</td>
</tr>
<tr>
<td>56</td>
<td>Hanyang University Seoul Hospital</td>
<td>EHR</td>
<td>504,073</td>
</tr>
<tr>
<td>57</td>
<td>Chonnam National University Hwasun Hospital</td>
<td>EHR</td>
<td>436,645</td>
</tr>
<tr>
<td>58</td>
<td>The Catholic Univ. of Korea, Eunpyeong ST. Mary’s Hospital</td>
<td>EHR</td>
<td>122,526</td>
</tr>
<tr>
<td>59</td>
<td>Keimyung University Daegu Dongsan Hospital</td>
<td>EHR</td>
<td>491,805</td>
</tr>
<tr>
<td>60</td>
<td>Keimyung University Gyeongbuk Medial Center</td>
<td>EHR</td>
<td>1,849,638</td>
</tr>
<tr>
<td>61</td>
<td>SMG-SNU Boramae Medical Center</td>
<td>EHR</td>
<td>56,579,726</td>
</tr>
<tr>
<td>62</td>
<td>Presbyterian Medical Center</td>
<td>EHR</td>
<td>9,822,577</td>
</tr>
<tr>
<td>63</td>
<td>Chung-Ang University Hospital</td>
<td>EHR</td>
<td>55,651,898</td>
</tr>
</tbody>
</table>
We aimed to standardize HIRA data into OMOP-CDM, build infrastructure providing scalable accessibility and a flexible data analysis environment with privacy-by-design protection, and verify whether the infrastructure guarantees the reproducibility of research.

The aim of this study was to enhance the FAIRness of the national healthcare database, which refers to its ability to be easily Findable, Accessible, Interoperable, and Reusable (FAIR).
RFZ in Korea

Research boarder-Free Zone (RFZ)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Data Partner (Eng)</th>
<th>Type of Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kyung Hee University Hospital At Gangdong</td>
<td>EHR</td>
</tr>
<tr>
<td>2</td>
<td>Kangdong Sacred Heart Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>3</td>
<td>Kangwon National University Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>4</td>
<td>Konyang University Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>5</td>
<td>Gyeongsang National University Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>6</td>
<td>Kyung Hee University Medical Center</td>
<td>EHR</td>
</tr>
<tr>
<td>7</td>
<td>Catholic Kwandong University International ST. Mary’s Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>8</td>
<td>Daegu Catholic University Medical Center</td>
<td>EHR</td>
</tr>
<tr>
<td>9</td>
<td>Myongji Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>10</td>
<td>Myongji Hospital (Jecheon)</td>
<td>EHR</td>
</tr>
<tr>
<td>11</td>
<td>Pusan National University Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>12</td>
<td>Bucheon Sejong Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>13</td>
<td>Chungnam National University Sejong Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>14</td>
<td>Soonchunghyang University Hospital (Gumi)</td>
<td>EHR</td>
</tr>
<tr>
<td>15</td>
<td>Soonchunghyang University Hospital (Bucheon)</td>
<td>EHR</td>
</tr>
<tr>
<td>16</td>
<td>Soonchunghyang University Hospital(Seoul)</td>
<td>EHR</td>
</tr>
<tr>
<td>17</td>
<td>Soonchunghyang University Hospital (Chonan)</td>
<td>EHR</td>
</tr>
<tr>
<td>18</td>
<td>Ajou University Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>19</td>
<td>Ulsan University Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>20</td>
<td>Wonkwng University Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>21</td>
<td>Ewha Womans University Medical Center (Mokdong)</td>
<td>EHR</td>
</tr>
<tr>
<td>22</td>
<td>Ewha Womans University Medical Center (Seoul)</td>
<td>EHR</td>
</tr>
<tr>
<td>23</td>
<td>Incheon Sejong Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>24</td>
<td>Jeonbuk National University Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>25</td>
<td>Gyeongsang National University Changwon Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>26</td>
<td>Chungnam National University Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>27</td>
<td>Korea Institute of Radiological & Medical Sciences</td>
<td>EHR</td>
</tr>
<tr>
<td>28</td>
<td>Keimyung University Daegu Dongsan Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>29</td>
<td>Keimyung University Dongsan Medical Center</td>
<td>EHR</td>
</tr>
<tr>
<td>30</td>
<td>Keimyung University Kyungju Dongsan Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>31</td>
<td>Hallym University Dongtan Sacred Heart Hospital</td>
<td>EHR</td>
</tr>
<tr>
<td>32</td>
<td>Inje University Busan Paik Hospital</td>
<td>EHR</td>
</tr>
</tbody>
</table>

Purpose

Mutual Cooperation Agreement for Multi-center Collaborative Research using OMOP-CDM

Contents of Agreement

1. Reciprocal unlimited access to CDM of RFZ hospitals
2. Single IRB
Events in Korea

Seminar
- Seminar: Writing papers using CDM
- Date: 21 March 2023
- Participants: 15

Tutorial
- Tutorial: 2023 OHDSI Korea Tutorial
- Date: 28 June 2023
- Participants: 35
Mapping Updates in Korea

- In Korea, we have a code for the reimbursement or claim data called EDI.
- Athena has incorporated 313,431 EDI codes of Korean medical information.
- We aim to update 457,740 EDI codes into the OMOP Standardized Vocabularies by incorporation the data provided by HIRA up to October 1, 2023.
- This year, our goal is to load EDI codes into Athena by next February.

<table>
<thead>
<tr>
<th></th>
<th>EDI code before</th>
<th>EDI code after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug</td>
<td>23,231</td>
<td>65,637</td>
</tr>
<tr>
<td>Device</td>
<td>19,813</td>
<td>44,453</td>
</tr>
<tr>
<td>Medical Services</td>
<td>270,387</td>
<td>457,740</td>
</tr>
<tr>
<td>Total</td>
<td>313,431</td>
<td>457,740</td>
</tr>
</tbody>
</table>
Research in Korea: UDI-CDM

- **Unique Device Identifier (UDI)** is a system of labeling and identifying medical devices within the supply chain from manufacturing.

- UDI system is more granular than SNOMED-CT or EDI vocabulary.
 - Granularity of vocabulary: SNOMED-CT < Korean EDI < UDI
Research in Korea: UDI-CMD

Example of EDI based medical device CDM Entry

- Pacemaker - VISIONIST X4 CRT-P (EDI: G8103225)

<table>
<thead>
<tr>
<th>CDM Field</th>
<th>User Guide</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>device_exposure_id</td>
<td>Unique ID (PK)</td>
<td>1</td>
</tr>
<tr>
<td>device_concept_id</td>
<td>OMOP Standard Vocabulary Concept ID</td>
<td>45767329</td>
</tr>
<tr>
<td>unique_device_id</td>
<td>Device identifier of UDI (UDI-DI)</td>
<td>(01)08801234512343</td>
</tr>
<tr>
<td>production_id</td>
<td>Production Identifier of UDI (UDI-PI)</td>
<td>(10)110500(17)120501(21)968376H234J</td>
</tr>
<tr>
<td>device_source_value</td>
<td>EDI code</td>
<td>G8103225</td>
</tr>
<tr>
<td>device_source_concept_id</td>
<td>EDI OMOP concept ID</td>
<td>42103125</td>
</tr>
</tbody>
</table>

Standard Vocabulary in CDM

<table>
<thead>
<tr>
<th>Concept ID</th>
<th>Vocabulary ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45767329</td>
<td>SNOMED</td>
<td>CRT implantable pacemaker</td>
</tr>
</tbody>
</table>

Vocabulary mapping

EDI Code (Source code: G8103225)

<table>
<thead>
<tr>
<th>Concept ID</th>
<th>Source_value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>42103125</td>
<td>G8103225</td>
<td>VISIONIST X4 CRT-P</td>
</tr>
</tbody>
</table>
Research in Korea: UDI-CDM

Mapping EDI to UDI-DI

<table>
<thead>
<tr>
<th>Group of EDI</th>
<th>Group Name</th>
<th>Medical Devices</th>
<th>Mapping rates of DI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model name</td>
<td>Model name + EDI</td>
</tr>
<tr>
<td>G0</td>
<td>Artificial blood vessels</td>
<td>13.33%</td>
<td>13.33%</td>
</tr>
<tr>
<td>G8</td>
<td>Pacemaker, CRT, ICD & Lead</td>
<td>30.08%</td>
<td>69.92%</td>
</tr>
<tr>
<td>J8</td>
<td>Balloon catheter & Coronary stent</td>
<td>63.16%</td>
<td>88.10%</td>
</tr>
</tbody>
</table>

Capturing UDI-PI information
- Combine information with the AI identifier to generate a temporary UDI-PI.
- There is no specific rule when creating UDI-PI.
- UDI-PI may have a different sequence or structure by the company, but necessary information can be extracted using the AI identifier.
Currently, there is no functionality for entering UDI lists in ATLAS. Therefore, Cohort generation and Incidence Rates analysis are impossible within the ATLAS platform.

→ Directly create cohorts and conduct IR analysis in the DBMS.

→ Generate SQL queries to enable the use of any device with UDI containing the (blank) format.
Research in Korea : UDI-CDM

Pacemaker and Infection

<table>
<thead>
<tr>
<th>EDI Code</th>
<th>UDI Code</th>
<th>Model</th>
<th>Longevity</th>
<th>Size (W x H x D)(cm)</th>
<th>Mass (g)</th>
<th>Volume (cc)</th>
<th>Group</th>
<th>Record Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>G8205625</td>
<td>00802526559228</td>
<td>L311</td>
<td>7.6 years</td>
<td>4.45 x 5.02 x 0.75</td>
<td>24.8</td>
<td>13.7</td>
<td>Standard</td>
<td>141</td>
</tr>
<tr>
<td>G8205625</td>
<td>00802526559266</td>
<td>L331</td>
<td>12.1 years</td>
<td>4.45 x 5.88 x 0.75</td>
<td>29.1</td>
<td>15.8</td>
<td>Extended</td>
<td>213</td>
</tr>
</tbody>
</table>

Projected Longevity (Years)

<table>
<thead>
<tr>
<th></th>
<th>VR</th>
<th>DR</th>
<th>DR-EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% RA/RV 2.5V</td>
<td>10.0</td>
<td>8.8</td>
<td>14.0</td>
</tr>
<tr>
<td>100% RA/RV 2.5V</td>
<td>9.2</td>
<td>7.6</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Additional Longevity Information

- Settings: pacing pulse width 0.4ms, Impedance 5000Ω, LRL 60bpm, Sensor On, EGM Onset On. These calculations also assume that the pulse generator spends 6 months in Storage mode during shipping and storage, the Zip telemetry use for 1 hour at implant time and for 40 minutes annually for in-clinic follow-up checks. For longevity calculations based on different settings please contact Boston Scientific technical services or your local representative.
- Power Supply VR and DR models: lithium-carbon monofluoride cell, Boston Scientific; 402290.
- Power Supply DR-EL: lithium-carbon monofluoride cell, Boston Scientific; 402294.
Synthetic vascular graft and Infection

<table>
<thead>
<tr>
<th>UDI</th>
<th>Diameter (mm)</th>
<th>Record Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00384401018124</td>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>00384401018148</td>
<td>8</td>
<td>106</td>
</tr>
<tr>
<td>00384401018155</td>
<td>10</td>
<td>235</td>
</tr>
<tr>
<td>00384401018162</td>
<td>12</td>
<td>129</td>
</tr>
<tr>
<td>00384401018179</td>
<td>14</td>
<td>49</td>
</tr>
<tr>
<td>00384401018186</td>
<td>16</td>
<td>39</td>
</tr>
<tr>
<td>00384401018193</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>00384401018209</td>
<td>20</td>
<td>67</td>
</tr>
<tr>
<td>00384401018216</td>
<td>22</td>
<td>72</td>
</tr>
<tr>
<td>00384401018223</td>
<td>24</td>
<td>89</td>
</tr>
<tr>
<td>00384401018230</td>
<td>26</td>
<td>65</td>
</tr>
<tr>
<td>00384401018247</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>00384401018254</td>
<td>30</td>
<td>121</td>
</tr>
<tr>
<td>00384401018261</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>00384401018278</td>
<td>34</td>
<td>21</td>
</tr>
</tbody>
</table>

Group Comparison

- **Small**: Diameter 6~16mm, Record count: 595
- **Large**: Diameter 18~34mm, Record count: 550
OHDSI Australia 2023

www.ohdsi-australia.org
Activities

2023 OHDSI APAC Symposium

GOAL for 2024:
Expand training opportunities/resources for Australia

https://ohdsi.org/2023apacsymposium/

https://ohdsi-australia.org/Full_Tutorial.pdf
GOAL for 2024: To expand community of practice in translation of EMR data to OMOP
Electronic Medical Records as a National Data Asset

Transforming health data for greater accessibility, rapid interrogation, and evidence generation.

EMR to OMOP Project: Advancing Healthcare Data Standards

Welcome to the EMR to OMOP Project, a transformative initiative led by the Australian Health Research Alliance’s (AHRA) Transformational Data Collaboration, directed by Professor Dougie Boyle and Roger Ward.

Project Funding: This project has been made possible through funding from the Australian Research Data Commons. For detailed information on the project and its funding, please visit [AHRA’s project page](#).

Current Developments: At present, three OMOP datasets are under development, all based on the Cerner platform. These datasets originate from leading healthcare providers:

1. **Austin Health in Melbourne** (https://doi.org/10.26188/24562789.v2)
2. **Western Health in Melbourne** (https://doi.org/10.26188/24597273.v2)
3. **Sydney Local Health District**
4. **The University of Queensland and Queensland Health**

While the data is not open access, researchers can enquire about access subject to ethics and governance approvals.

Future Expansion: As part of our strategic vision, we plan to expand our efforts to include EPIC EMRs in the future. This expansion aligns with our commitment to broadening the reach of standardized health data and fostering innovation in healthcare research and delivery.

Stay tuned for updates on our progress, milestones, and the growing impact of the EMR to OMOP Project.
Generating the evidence!

• SOS Challenge
 – Floroquinolones and Aortic Dissection Aneurysm
• Multiple Sclerosis treatment utilization and safety (PML)
• Methods Research
 – Prevalent New User studies
 – Heterogeneity

GOAL for 2024:
To increase the use of Australian datasets in OHDSI studies
New Evidence Translation Work Group

How can OHDSI *improve understanding* about real world evidence we produce so that it can be used in decision making?
www.ohdsi-australia.org

Cheers!
OHDSI Japan Chapter
Preview

14-Dec-2023
National Cancer Center Hospital East
Yoshihiro Aoyagi
中間形式からOMOP CDMへ#3

さほひめボキャブラリ（医薬品編）

背景・目的

- さほひめの医薬品コードは、レセ電コードで付いている。
- OMOP標準Concept IDへ変換（マッピング）したい。
- OMOP医薬品リストはRxNormとRxNorm Extensionで構成されている。今や多くがRxNorm Extension。
- Standrad印の医薬品にマッピングさせる必要がある。
- 基本的に名称でマッピングさせるしかない。

<table>
<thead>
<tr>
<th>患者ID</th>
<th>日付</th>
<th>拔出</th>
<th>日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2019-01-01</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>2019-02-01</td>
<td>50</td>
<td>15</td>
</tr>
</tbody>
</table>

https://www.ohdsi-japan.org/
https://www.ohdsi-japan.org/_files/ugd/a49dac_348dae96c934cc4a257d7d6bf84bae8.pdf
医療データの安心な連携分析で
健康な社会を創る
Japan Projects highlights

Rinchu Net overview

OHDSI Tool Documents

Usagi

Usagi は、独自に定義した各種項目（薬品、病名など）を CONCEPT アーバルヘッミングするための補助ツールです。

- セットアップ手順
- 操作手順

WhiteRabbit & Rabbit-in-a-Hat

OHOP DOM のあらゆるヘッミングを担うのが、Rabbit-in-a-Hat です。
Rabbit-in-a-Hat でヘッミング作業を進めると、White Rabbit では入力データを Rabbit-in-a-Hat で取り込まれ可能な形式に加工します。

- セットアップ手順
- 操作手順

Atlas

2023APACSymposium – OHDSI
OHDSI Tool Documents (rwd-data-environment-in-hospital.github.io)
looking to next year...
1. Collaboration!
2. Collaboration!
3. Collaboration!
Thank you!
OHDSI Singapore Update 2023

Singapore Chapter Co-Chairs:
Dr. Mengling ‘Mornin’ Feng
Senior Assistant Director, National University Health System
Assistant Professor, National University of Singapore
ephfm@nus.edu.sg

Dr Ngiam Kee Yuan
Group Chief Technology Officer, National University Health System
kee_yuan_ngiam@nuhs.edu.sg
Updates for 2023

- All-of-Singapore mapping efforts underway since 2021
- Deep mapping of demographics, diagnosis, medications and lab tests completed
- Harmonization across all research sites underway
- Mapping script is centrally available as a service on the TRUST platform to enable whole of country data synchronization
Updates for 2023

• Multiple large research groups undertaking mapping efforts of their research datasets
 – Precise - SG100K
 – ATTracT
 – Singcloud
 – GUSTO

• OMOP Genomics workgroup
 – Genomics definitions to be aligned to GA4GH
 – All genomics concepts to have a canonical ID (CID)
 – Definitions to be finalized this 2024
Updates for 2023

Singapore launches next phase of National Precision Medicine Programme

07 APR 2021
Updates for 2023

Asian Network for Translational Research and Cardiovascular Trials (ATTRaCT)

Asian netWork for Translational Research and Cardiovascular Trials (ATTRaCT) is the first integrated platform for translational cardiovascular research.
Building a Longitudinal National Integrated Cardiovascular Database – Lessons Learnt From SingCLOUD

Affiliations + expand
Free PMC article

Abstract

Background: Real world data on clinical outcomes and quality of care for patients with coronary artery disease (CAD) are fragmented. We describe the rationale and design of the Singapore Cardiovascular Longitudinal Outcomes Database (SingCLOUD). **Methods and Results:** We designed a health data grid to integrate clinical, administrative, laboratory, procedural, prescription and financial data from all public-funded hospitals and primary care clinics, which provide 80% of health care in Singapore. Here, we explain our approach to harmonize real-world data from diverse electronic medical and non-medical platforms to develop a robust and longitudinal dataset. We present pilot data on patients with myocardial infarction (MI) treated with percutaneous coronary intervention (PCI) between 2012 and 2014. The initial data set had 53,395 patients. Of these, 35,203 had CAD confirmed on coronary angiography, of whom 21,521 had PCI. Eventually, limiting to 2012-2014, 3,819 patients had MI with PCI, while 5,989 had MI. Compared with the quality improvement registry, Singapore Cardiovascular Data Bank, which had 109 fields from 18 clinics, the SingCLOUD platform captured an additional 918 fields.
GUSTO and S-PRESTO are Singapore’s largest and most comprehensive birth cohort studies. Collectively, these studies will give us more insight and understanding into the prevention and management of important diseases in Singapore and improve the nation’s health.

Read more >

Number of publications: 366

Number of media coverage: 135

Number of active GUSTO participants: 882

Number of active S-PRESTO participants: 327
GUSTO OMOP Data Catalogue lays the foundations for developing cross-study OMOP Data Catalogues expanded across APAC and global OHDSI data partners, enabling database level characterizations.

Dr Mukkesh Kumar
A*STAR

Cinday Ho
A*STAR
Updates for 2023

OMOP-CDM in Asia-Pacific regions and Lessons for Data Quality Assessment

Sujin Gan, RN1, Chungsoo Kim, PharmD1, Seongwon Lee, PhD2, Jing Li3, Jiawei Qian3, Gyeol Song3, Clair Blacketer4, Anthony Molinaro4, Dinuja Willigoda Liyanage5, Zhang jingyi6, Li Chao6, Roger Ward7, Mengling Feng8, PhD, Mui Van Zandt1, Rae Woong Park, MD, PhD1,2

1Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea; 2Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea; 3IQVIA, NC, United States; 4Janssen Research and Development, NJ, United States; 5University of South Australia, Australia; 6Wonders Information Co.Ltd, Shanghai, China; 7The University of Melbourne, Australia; 8Saw Swee Hock School of Public Health, National University of Singapore, Singapore

Introduction

The Observational Medical Outcome Partnership-Common Data Model (OMOP-CDM), an open community data standard, is being implemented globally, but data quality control for CDM adoption is challenging. The data quality assessment tools including the Achilles Heel1 and Data Quality Dashboard2 have been performed only individually at each institution. Therefore, European Health Data and Evidence Network (EHIDEN) has developed the CDM Inspection report, which writes a report on data statistics, mapping, and quality checks, to provide insight into the completeness, transparency, and quality of the data.

Methods

The CDM Inspection report was collected on the OHDSI Asian Pacific (APAC) community, using the R package (https://github.com/ABML/CdmInspection). A total of 22 databases from Korea, 2 from Japan, and 1 each from Australia, China, and Singapore were included, and they consisted of 25 EMRs and 2 claims. The report describes an analysis result of the number of records or patients, the ratio of records per person (RPP), the ratio of records per observation period, the mapping ratio between source and transformed data, the mapping level of drug vocabulary, and list of frequent concepts for each domain table of the OMOP-CDM.
Updates for 2023

Characterization of Health by OHDSI Asia-Pacific chapter to identify Temporal Effect of the Pandemic for Diabetes Mellitus (CHAPTER-DM)

Yizhi Dong¹, Seng Chan You², Su Bin Kim²,³, Jing Li⁴, Can Yin⁴, Mornin Feng Mengling¹

¹Affiliation A
²Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
³Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea
⁴IQVIA

Background

Since 2019, the SARS-CoV-2 coronavirus disease pandemic (COVID-19) had spread all over the world and proposed challenges to healthcare systems. The OHDSI Asian Pacific regional chapter has launched the Characterization of Health by OHDSI Asia-Pacific chapter to identify Temporal Effect of the Pandemic (CHARTER) study to describe the temporal change in incidence of diseases and healthcare pattern before and after the emergence of COVID-19.

Diabetes is an important comorbidity among patients diagnosed with COVID-19 with high prevalence (1). Evidence was shown that the presence of diabetes doubles the COVID-19 mortality risk and leads to worse severity (2). The identification and proper treatment that is given to patients with diabetes had thus become crucial during the pandemic. However, patients with diabetes may have limited access to healthcare resources due to the pressure on healthcare system because of COVID-19. In addition, the treatment pattern may vary during the pandemic since priority may be given to infectious diseases instead of diabetes treatment.
Updates for 2023
Master of Biomedical Informatics
Plans for 2024
APAC Symposium 2024

6-9 Dec 2024
APAC Symposium 2024
Day 0: Ohdsi Tutorial/Hands-on Workshop
APAC Symposium 2024

Day 1: Official Symposium
APAC Symposium 2024
Day 2-3: Data-thon
Co-Host with SG Healthcare AI Datathon and EXPO (SHADE 2024)

WORKSHOPS
On the latest predictive technologies and devices

EXPO
Lectures and seminars by speakers from Microsoft, Huawei, Harvard, and MIT

DATATHON
Solve real world healthcare problems and train your AI with our datasets.

HALE
Healthcare AI Leadership Executive Education Programme
APAC Symposium 2024
Preparing for Singapore
APAC Symposium 2024

6-9 Dec 2024
Thank you!