2023: Year in Review
2013-2023: OHDSI 10-year birthday in review
Agenda

• Bring your favorite OHDSI swag
• 2023 Year in review (polleverwhere)
 – Jan - targets: vocab, data network, devi infrastructure,
 – Feb - Phenotype Pheb
 – Mar - software, publications
 – Apr - software, publications
 – May – SOS challenge
 – June - software, publications,
 – July - OHDSI EU and APAC
 – Aug- software, publications
 – Sept - software, publications
 – Oct - OHDSI US
 – Nov- software, publications
 – Dec- software, publications
 – Highlights: Faazah – first paper; Ross, Alex, and Anna – finish PhD; Nicole – Beer, FDA workshop on negative controls, Europe – National nodes (polleverwhere)
• Decade in review
 – First meeting
 – First big network study – Tpathways
 – Book of OHDSI
 – LEGEND
 – Picture montage – symposia over years
 – COVID study-a-thon – impact on hydroxychloroquine
 – Fun times
 • Study-a-thons
 • US closings
 – Dr. Suess
 – Cake
 – Study-in-a-day
 – Art
 – Weaves
 – Lego
 – Escape room / OHDSI Got Talent!
 • EU closings – Peter singing
 • APAC closing – Nicole Al Beer
 – Cameos
 – Cheers video
 – Blooper reel?
 – Legos video
 – Titans through the years
 – Happy Birthday
 – Cake

• Get people to share their favorite OHDSI memories – open mic
2023 In Review
What was your favorite OHDSI highlight in 2023?

Nobody has responded yet.

Hang tight! Responses are coming in.
Looking back 12 months to our 2023 resolutions

Workgroups:
1) All workgroup leaders will provide their purpose and 2023 Objectives and Key Results by end of January
2) All workgroups will present on a community call in February to encourage participation

Community collaboration events:
- Symposia: Europe, APAC, Global
- Virtual events: DevCon, Phenotype Phebruary, Sisyphus Challenge
 • Let’s help each other learn how to do network studies by doing a network study together!
 - Collaboratively identify an important research question
 - Collaboratively design the analysis
 - Collaboratively execute across the network
 - Collaboratively interpret results and disseminate findings

- External collaboration opportunities
 - We will actively monitor external collaboration opportunities and promote them on OHDSI.org and community calls

- Foundational pillars that should be focus areas for 2023
 - Standardized vocabularies: Increase transparency and maturity with vocabulary development and evaluation process
 - Standardized data network: Increase transparency and maturity of OHDSI data network
 - Standardized open-source tools: Increase adoption and ease-of-use of HADES packages and other OHDSI open-source analytic tools
The proposed OHDSI calendar for 2023
"Phenotype Phebruary" was a community-wide initiative to both develop and evaluate phenotypes for health outcomes that could be investigated by the community.

This is the second year of Phenotype Phebruary in the OHDSI community (look back at Year 1 here). It was introduced during the Jan. 31 community call (watch here), and went on throughout the month. This year, the leadership team of Gowtham Rao and Azza Shoaihi helped identify 11 phenotypes that are being investigated throughout the month. Though the month has ended, the work continues. If you would like to join the discussions around any of the phenotypes, please visit the appropriate links below, which will take you to the proper threads on the OHDSI forums.

What Did We Accomplish?

Phenotype Phebruary 2023 in numbers

- 11 phenotypes discussed in the forums
 - 5 phenotypes finished peer review --> library
 - 5 phenotypes developed, evaluated and on their way to peer review
- 4 debates/discussions addressed
- 7 shiny apps on data.ohdsi.org
- 32 collaborators interacted in the forums or attended calls
- 9 Publications
 - 8 applied publications planned
 - 1 methods publication

Join Our Community Efforts Around Any Of These Phenotypes

https://www.ohdsi.org/phenotype-phebruary-2023/
Sisyphus challenge: April - May

‘System’ required elements:
- Required phenotypes
- Analysis specifications
- Decision thresholds

Data quality evaluation
- Research question
- Database diagnostics

Phenotype development and evaluation
- Cohort definitions
- Cohort diagnostics

Analysis reliability evaluation
- Analysis design choices
- Study diagnostics

Week 2: Data diagnostics

Distributed data network, standardized to common data model

Network coordination

Final unblinded results

Interface for exploration

System required elements:
- Required phenotypes
- Analysis specifications
- Decision thresholds

Week 2: Data diagnostics

Distributed data network, standardized to common data model

Network coordination

Final unblinded results

Interface for exploration
Sisyphus challenge: April - May

‘System’ required elements:
- Required phenotypes
- Analysis specifications
- Decision thresholds

Data quality evaluation
Research question → Database diagnostics
Pass
Fail
STOP

Phenotype development and evaluation
Cohort definitions → Cohort diagnostics
Pass
Fail
STOP

Analysis reliability evaluation
Analysis design choices → Study diagnostics
Pass
Fail
STOP

Distributed data network, standardized to common data model
Network coordination

Week 3-4: Phenotype development and evaluation

Final unblinded results
Interface for exploration

Distributed data network, standardized to common data model
Network coordination
Sisyphus challenge: April - May

- Required phenotypes
- Analysis specifications
- Decision thresholds

Data quality evaluation:
- Research question
- Database diagnostics
 - Pass
 - Fail
 - Stop

Phenotype development and evaluation:
- Cohort definitions
- Cohort diagnostics
 - Pass
 - Fail
 - Stop

Analysis reliability evaluation:
- Analysis design choices
- Study diagnostics
 - Pass
 - Fail
 - Stop

Distributed data network, standardized to common data model

Network coordination

Final unblinded results

Interface for exploration

Week 5: Analysis design

‘System’ required elements:

Only possible because of standardized analytics developed across our community
Sisyphus challenge: April - May

Week 6-8: Analysis execution, study diagnostics, evidence synthesis
Sisyphus challenge: April - May

‘System’ required elements:
- Required phenotypes
- Analysis specifications
- Decision thresholds

Data quality evaluation
- Research question
- Database diagnostics

Phenotype development and evaluation
- Cohort definitions
- Cohort diagnostics

Analysis reliability evaluation
- Analysis design choices
- Study diagnostics

Week 9: Results interpretation
- VEGF → ESRD
- FQ → AA
- MS biologics → PML
- risankizumab → CVA

Network coordination

Distributed data network, standardized to common data model

Final unblinded results

Interface for exploration
OHDSI Europe - June

The numbers

- 3 days
- 350 attendees
- 5 plenary sessions
- 10 rapid fire presentations
- 89 posters
- 7 national nodes
- 5 software demo’s
- 2 blues brothers
OHDSI APAC - June

- Two-day in-person event
 - Symposium Day 1: Main Conference
 - Symposium Day 2: Tutorials + Oncology Workgroup discussions

- 110 attendees
 - 58% Aus (All Aus regions represented excl. NT)
 - 42% International
 - 32% APAC (Korea, Taiwan, Japan, Singapore, Hong Kong, China)
 - 10% Other (US, UK & Sweden)

- Diverse participant representation
 - Academics, clinicians, students, regulators, industry, not-for-profit [Minderoo Foundation], OHDSI devotees & one consumer!

- Eight Symposium sessions including
 - 30 speakers
 - 12 speaker presentations including:
 - 7 lightning talks representing Asia-Pacific
 - 2 panel discussions
 - 6 tutorial presentations
 - 1 (Oncology) workgroup brain-storm session
 - 21 poster presentations

- One phenomenal APAC Steering Committee – thanks all!
- ... and AI-generated beer!

https://ohdsi.org/2023apacsymposium/
OHDSI Global - October

• >430 attendees over 3 days
• Collaborator showcase: 137 posters, 24 software demos, 10 lightning talks
• 18 workshops and HL7-OHDSI Connect-a-thon

https://www.ohdsi.org/ohdsi2023/
Standardized vocabularies: Increase transparency and maturity with vocabulary development and evaluation process

Landscape assessment

FINDINGS
- 87% of the community feels confident about Vocabularies’ integrity
- Most commonly used vocabularies: SNOMED, ICD 9/10 (US and int versions), MedDRA, ICD-11, ATC, RxNorm/RxIE, ICD10PCS, ICD9Proc, CPT4, LOINC, CVX, HCPCS, UCUM, NDC, NAACCR, Cancer Modifier
- Most update data annually or semi-annually

NEEDS
- Transparent release schedule
- Vocabulary changes, versioning
- Transparent QA/QC
- Better coverage and hierarchies
- More documentation and educational materials

Vocabulary committee

Vocabulary team

Release schedule and roadmap

Community contributions

Quality framework & documentation
Standardized data network: increase transparency and maturity of OHDSI data network

OHDSI Evidence Network

OHDSI is proud to have a global community dedicated to generating real-world evidence and which recognizes the opportunity to collaborate together as part of a distributed network based on standardized data and standardized analytics. The OHDSI Evidence Network consists of organizations equipped with access to one or more databases standardized to the OMOP CDM who express a keen interest in participating in OHDSI network studies. Collaboratively, OHDSI Evidence Network partners share aggregate summary statistics about their databases, which are used to support Database Diagnostics, helping identify databases within the network that are fit-for-use for particular research questions. Additionally, partners have the opportunity to opt in and contribute to network studies proposed by the OHDSI community.

The recent SOS challenge serves as a compelling demonstration of the OHDSI Evidence Network’s current capabilities and its promising future potential. We wholeheartedly encourage all organizations that are adopting the OMOP CDM and aspire to apply standardized analytics for the reliable generation of real-world evidence to become part of the OHDSI Evidence Network.

A message from Common Data Model workgroup lead Clair Blacketer ...

During the first community call of 2023, Patrick Ryan unveiled the strategic priorities for the OHDSI Community for the year. Among these, a key focus is on enhancing the transparency and maturity of the OHDSI network. To address this objective, we began by considering how network studies are currently conducted, recognizing the challenges and complexities faced by collaborating organizations when contributing to the body of evidence. This investigation led to the creation of Database Diagnostics, a tool designed to answer a critical question: when tackling a specific research inquiry, which data sources within the OHDSI Evidence Network are the most relevant and suitable for generating robust evidence?

This innovative approach leverages aggregated summary statistics from each data source, obtained through the open-source tool dbProfile. It evaluates data fitness-for-use across various dimensions, including patient demographics, domain coverage, longitudinal data availability, and the capture of target, comparator, and outcomes variables. The overarching vision was to establish these database profiles as the foundation to enable the OHDSI Evidence Network.

Organizations and Data Sources in the OHDSI Evidence Network

- Aga University - apex University
- Cali di Copa & Càss di Copa i.e.g
- Clinical Center of Montenegro - Clinical Center of Montenegro
- Columbia University Medical Center - Columbia University Medical Center
- Hong Kong University - UK THIN
- WVA - Australia EMR
- WWA - Disease Analyzer France
- WWA - Database Analyzer Germany
- WWA - Japan Claims
- WWA - Japan HIS
- WWA - Longitudinal Patient Database (LPO) in Belgium
- WWA - Longitudinal Patient Database (LPO) in France
- WWA - Longitudinal Patient Database (LPO) in Italy
- WWA - Longitudinal Patient Database (LPO) in Spain
- WWA - OMOP-US Hospital Data Master
- WWA - Pharmacist Place
- WWA - UK Medical Research Data EMIS
- WWA - UK Medical Research Data THIN
- WWA - US Open Claims
- WWA - Japan Research & Development - JMDC
- WWA - Japan Research & Development - Morpheus
- WWA - MarketResearch Commercial Claims and Encounters
- WWA - Japan Research & Development - Merivate
- WWA - MarketResearchMedicareSupplemental

On March 28, 2023, the OHDSI Global Community initiated the Save Our Siyuoh Challenge, a groundbreaking opportunity for collaborative research involving simultaneous participation in four different network studies. What made it truly remarkable was that any organization interested in joining the OHDSI Evidence Network could contribute to these studies by sharing their database profiles for the data sources they had access to. These profiles were centrally aggregated at the OHDSI Central Coordinating Center, enabling us to empirically determine which of the four study questions each data source was best suited to address. This inaugural OHDSI Evidence Network endeavor encompassed 36 diverse data sources from 16 different organizations. Not only did this foster rapid evidence generation and collaboration during the SOS Challenge, but it also positioned us for future collaborations on additional network studies as part of the OHDSI Evidence Network.

If you are interested in becoming a part of the OHDSI Evidence Network and contributing to advancing evidence-based healthcare, please use the provided QR code to complete a brief form about your organization and your data source. A member of the OHDSI Network Data Quality Working Group will reach out to you to explore this exciting opportunity further!
Standardized open-source tools: Increase adoption and ease-of-use of HADES packages and other OHDSI open-source analytic tools

HADES

HADES is a set of open source R packages for large scale analytics, including population characterization, population-level causal effect estimation, and patient-level prediction.

The packages offer R functions that together can be used to perform an observational study through the full journey from data to evidence, including data manipulation, statistical modeling, and results generation with supporting statistics, tables and figures.

Each package includes functions for specifying and subsequently executing multiple analyses efficiently. HADES supports best practices for use of observational data as learned from previous and ongoing research, such as transparency, reproducibility, as well as measuring the operating characteristics of methods in a particular context and subsequent empirical calibration of estimates produced by the methods.

Learn more about the individual HADES packages in this section.

The eight HADES packages shown above have been released on CRAN and have been downloaded more than 500,000 times.
Other highlights in 2023

• 100 publications
 – Including Faaizah Arshad’s first OHDSI lead-authored publication
 – OHDSI’s largest network study (26 databases), led by Erica Voss
 – FDA-BEST work developing Bayesian framework for vaccine safety surveillance, led by Fan Bu

• PhDs with OHDSI research as part of their dissertation
 – Anna Ostropolets, Linying Zhang, Ross Williams, Alex Rekkas, Chungsoo Kim

• 8 new Titans
 – Nicole Pratt, Gyeol Song, Cynthia Sung, Gowtham Rao, Azza Shoaibi, Jessie Tong, Katy Sadowski, Center for Surgical Sciences
What was your favorite OHDSI highlight in 2023?

Nobody has responded yet.

Hang tight! Responses are coming in.
Happy Birthday OHDSI!
10 years in review
What was your favorite OHDSI highlight over the last 10 years?

Nobody has responded yet.

Hang tight! Responses are coming in.
On 16 December 2013, Columbia University Department of Biomedical Informatics formally voted to establish the OHDSI Central Coordinating Center

...and what a journey it has been ever since....
First OHDSI release of OMOP CDM (2014)

OMOP Common Data Model v5 - What’s new from v4 (yellow)?
First open-source tool releases (2014)
First OHDSI F2F (2014)
Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers

George Hripcsaka, Jon D. Dukeb, Nigam H. Shahc, Christian G. Reichd, Vojtech Husere, Martijn J. Schuemiee,f, Marc A. Suchardg, Rae Woong Parkh, Ian Chi Kei Wongi, Peter R. Rijnbeekj, Johan van der Leik, Nicole Prattl, G. Niklas Norénl, Yu-Chuan Lim, Paul E. Stangn, David Madigano, Patrick B. Ryanp

a Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
b Regenstrief Institute, Indianapolis, IN, USA
c Center for Biomedical Informatics Research, Stanford University, CA, USA
d AstraZeneca PLC, Waltham, MA, USA
e NIH Clinical Center, Bethesda, MD, USA
f Centre for Safe Medication Practice and Research, Dept. of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
g Janssen Research & Development, LLC, Titusville, NJ, USA
h Dept. of Biostatistics & Dept. of Human Genetics, David Geffen School of Medicine, Univ. of California, Los Angeles, CA, USA
i Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
j Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
k School of Pharmacy and Medical Sciences, University of South Australia, Australia
l Uppsala Monitoring Centre, WHO Collaborating Centre for International Drug Monitoring, Uppsala, Sweden
m College of Medical Science and Technology (CoMST), Taipei Medical University, Taipei, Taiwan
n Department of Statistics, Columbia University, New York, NY, USA

1,032 citations!
First OHDSI community paper (2015)

2014 survey:
- 58 databases using OMOP CDM
- >200 million unique patient records
- “it is feasible to impose a strong information model ... represent a significant fraction of the world’s population”

Software tools:
- ACHILLES for database characterization
- HERMES for vocabulary exploration
- PLATO for predictive modeling
- HERACLES for cohort characterization
- HOMER for causal inference

“Over 90 participants from around the world have joined the collaborative with a vision to access a network of one billion patients to generate evidence about all aspects of healthcare, where patients, clinicians and all other decision-makers around the world use OHDSI tools and evidence every day.”
First OHDSI Global Symposium (2015)
First OHDSI network study (2016)

Characterizing treatment pathways at scale using the OHDSI network

George Hripcsak, Patrick B. Ryan, Jon D. Duke, Nigam H. Shah, Rae Woong Park, Vojtech Huser, Marc A. Suchard, Martijn J. Schuemie, Frank J. DeFalco, Adler Perotte, Juan M. Banda, Christian G. Reich, Lisa M. Schilling, Michael E. Matheny, Daniella Meeker, Nicole Pratt, and David Madigan

• 11 databases in 4 countries
• 250 million patient records
First OHDSI network study (2016)

- Database-level heterogeneity: population, geography, health system policies
- Person-level heterogeneity: 10% of diabetes, 24% of hypertension, 11% of depression followed a unique treatment pathway
Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data

Martin J. Schuemiea,b,1, George Hripcsaka,b,1,2, Patrick B. Ryana,b,1, David Madigana,3, and Marc A. Sucharda,4,1

1Observational Health Data Sciences and Informatics, New York, NY 10032; 2Epidemiology, Analytics, Janus Research & Development, Thousand, NJ 08550; 3Department of Biomedical Informatics, Columbia University, New York, NY 10065; 4Medical Informatics Sciences, New York-Presbyterian Hospital, New York, NY 10023; 1Departments of Statistics, Columbia University, New York, NY 10027; 2Department of Biostatistics, University of California, Los Angeles, CA 90095; 3Department of Biostatistics, University of California, Los Angeles, CA 90095; and 4Department of Human Genetics, University of California, Los Angeles, CA 90095

A sample of negative control experiments is needed to quantify bias.

Before calibration: CI can’t be trusted

After calibration: CI have appropriate coverage
First OHDSI regional symposia (2017-2018)

South Korea

Netherlands

China
First OHDSI methods research on prediction (2018)

Research and Applications

Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data

Jenna M Reps,¹ Martijn J Schuemie,¹ Marc A Suchard,² Patrick B Ryan,¹ and Peter R Rijnbeek³

Standardized Framework:

Open-source implementation:

Application at scale:
First OHDSI study-a-thon (2018)
Book of OHDSI (2019)
Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis

Summary
Background Uncertainty remains about the optimal monotherapy for hypertension, with current guidelines recommending any primary agent among the first-line drug classes thiazide or thiazide-like diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine calcium channel blockers, and non-dihydropyridine calcium channel blockers, in the absence of comorbid indications. Randomised trials have not further refined this choice.

Methods We developed a comprehensive framework for real-world evidence that enables comparative effectiveness and safety evaluation across many drugs and outcomes from observational data encompassing millions of patients, while minimising inherent bias. Using this framework, we did a systematic, large-scale study under a new-user cohort design to estimate the relative risks of three primary (acute myocardial infarction, hospitalisation for heart failure, and stroke) and six secondary effectiveness and 46 safety outcomes comparing all first-line classes across a global network of six administrative claims and three electronic health record databases. The framework addressed residual confounding, publication bias, and p-hacking using large-scale propensity adjustment, a large set of control outcomes, and full disclosure of hypotheses tested.

Findings Using 4.9 million patients, we generated 22,000 calibrated, propensity-score-adjusted hazard ratios (HRs) comparing all classes and outcomes across databases. Most estimates revealed no effectiveness differences between classes; however, thiazide or thiazide-like diuretics showed better primary effectiveness than angiotensin-converting enzyme inhibitors: acute myocardial infarction (HR 0.84, 95% CI 0.75–0.95), hospitalisation for heart failure (0.83, 0.74–0.95), and stroke (0.83, 0.74–0.95) risk while on initial treatment. Safety profiles also favoured thiazide or thiazide-like diuretics over angiotensin-converting enzyme inhibitors. The non-dihydropyridine calcium channel blockers were significantly inferior to the other four classes.

Interpretation This comprehensive framework introduces a new way of doing observational health-care science at scale. The approach supports equivalence between drug classes for initiating monotherapy for hypertension—in keeping with current guidelines, with the exception of thiazide or thiazide-like diuretics superiority to angiotensin-converting enzyme inhibitors and the inferiority of non-dihydropyridine calcium channel blockers.
First virtual study-a-thon (2020)
Evidence was needed around the use of hydroxychloroquine (HCQ) alone and in combination with azithromycin (AZ). We examined the use of these drugs in rheumatoid arthritis (RA) patients.

Findings:
– In history use in RA population, HCQ alone is generally safe but in combination with AZ it shows a doubling of risk of 30-day cardiovascular mortality.
COVID impact: Characterizing background rates of adverse events for vaccine surveillance (2021)

Characterising the background incidence rates of adverse events of special interest for covid-19 vaccines in eight countries: multinational network cohort study

Xintong Li, Anna Ostropolets, Rupa Makadia, Azza Shoaibi, Gowtham Rao, Anthony G Sena, Eugenia Martinez-Hernandez, Antonella Delmestri, Katia Verhamme, Peter R Rijnbeek, Talita Duarte-Salles, Marc A Suchard, Patrick B Ryan, George Hripcsak, Daniel Prieto-Alhambra

Figure 1: Age-sex stratified incidence rates, overall and per database, for 15 adverse events of special interest

COVID-19 Vaccine AstraZeneca: benefits still outweigh the risks despite possible link to rare blood clots with low blood platelets

EMEA safety committee, PEARL, concluded its preliminary review of a signal of blood clots in people vaccinated with Vaxzevria (previously COVID-19 Vaccine AstraZeneca) at its extraordinary meeting of 18 March 2021. The Committee confirmed that:
- the benefits of the vaccine in combating the still widespread threat of COVID-19 (which itself results in hospital problems and may be fatal) continue to outweigh the risk of side effects;
- the vaccine is not associated with an increase in the overall risk of blood clots (thromboembolic events) in those who receive it;
- there is no evidence of a problem related to specific batches of the vaccine or to particular manufacturing sites;
- however, the vaccine may be associated with very rare cases of blood clots associated with thrombocytopenia, i.e. low levels of blood platelets (elements in the blood that help it to clot) with or without bleeding, including rare cases of clots in the vessels draining blood from the brain (CVST). These are rare cases - around 20 million people in the UK and EEA had received the vaccine as of March 16 and EMA had reviewed only 7 cases of blood clots in multiple blood vessels (disseminated intravascular coagulation, DIC) and 18 cases of CVST. A causal link with the vaccine is not proven, but is possible and deserves further analysis.
COVID impact: Increasing the reliability of the research process (2021)

- Patients with cardiovascular diseases and hypertension treated with angiotensin converting enzyme inhibitors (ACEs) angiotensin-II receptor blockers (ARBs) may influence susceptibility to COVID-19 and worsen its severity.

As stated by Watson et al., in relation to one of the published studies, lack of transparency and uncertainties about research standards applied raise doubts about published results. Morales et al. supported the reproducibility of their study by publishing the study protocol in the EU PAS Register ahead of time, providing a start-to-finish executable code, facilitating the sharing and exploration of the complete result set with an interactive web application and asking clinicians and epidemiologists to perform a blinded evaluation of propensity score diagnostics for the treatment comparisons.
A consistent commitment to reliable evidence: Plenary sessions at OHDSI symposia

2015 - OHDSI in Action: Open-source analytics for patient-centered evidence
2016 - OHDSI’s journey toward reliable evidence generation and dissemination
2017 - Journey Through Clinical Characterization: Large-scale honest incidence
2018 - Large-scale Evidence Generation and Evaluation of Network of Databases (LEGEND): Clinical applications in hypertension
2019 - A journey toward real-world evidence for regulatory decision-making:
 - Building confidence in real-world data - Data quality reporting
 - Establishing scientific best practices for real-world analysis - Book Of OHDSI
 - Proving reliable real-world evidence - Replicating RCTs using LEGEND
2020 – The Journey to Reliable Evidence: Reproducibility and Generalizability
2021 - Large Scale Network Phenotype Development, Evaluation and Characterization
2022 – Objective Diagnostics: A pathway to provably reliable evidence
2023 – Improving the reliability and scale of case validation.
OHDSI collaborations in scholarship (2013-2023)

- >620 publications
- >3,600 authors
- >12,000 citations
OMOP Common Data Model adoption (2023)

Hripcsak et al, MedInfo 2015:
• 58 databases using OMOP CDM
• >200 million unique patient records
• “it is feasible to impose a strong information model ...represent a significant fraction of the world’s population”

OMOP CDM Users By The Numbers

• 534 data sources
• 49 countries
• 956 million unique patient records (12% of world’s population)
Hripcsak et al, MedInfo 2015: “Over 90 participants from around the world have joined the collaborative with a vision to access a network of one billion patients to generate evidence about all aspects of healthcare, where patients, clinicians and all other decision-makers around the world use OHDSI tools and evidence every day.”
What was your favorite OHDSI highlight over the last 10 years?

Nobody has responded yet.

Hang tight! Responses are coming in.
If you could give OHDSI a birthday present, what would it be?

Nobody has responded yet.

Hang tight! Responses are coming in.