Workgroup OKRs + Phenotype Phebruary Update #1

OHDSI Community Call
Feb. 6, 2024 • 11 am ET
Upcoming Community Calls

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 6</td>
<td>Workgroup OKRs / Phenotype Phebruary Update 1</td>
</tr>
<tr>
<td>Feb. 13</td>
<td>Workgroup OKRs / Phenotype Phebruary Update 2</td>
</tr>
<tr>
<td>Feb. 20</td>
<td>Workgroup OKRs / Phenotype Phebruary Update 3</td>
</tr>
<tr>
<td>Feb. 27</td>
<td>Workgroup OKRs / Phenotype Phebruary Update 4</td>
</tr>
<tr>
<td>Mar. 5</td>
<td>New Vocabulary Release Update</td>
</tr>
</tbody>
</table>
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
OHDSI Shoutouts!

Congratulations to the team of **Woo Yeon Park, Kyulee Jeon, Teri Sippel Schmidt, Haridimos Kondylakis, Tarik Alkasab, Blake E. Dewey, Seng Chan You & Paul Nagy** on the publication of **Development of Medical Imaging Data Standardization for Imaging-Based Observational Research: OMOP Common Data Model Extension** in the *Journal of Imaging Informatics in Medicine*.

Development of Medical Imaging Data Standardization for Imaging-Based Observational Research: OMOP Common Data Model Extension

Woo Yeon Park - Kyulee Jeon - Teri Sippel Schmidt - Haridimos Kondylakis - Tarik Alkasab - Blake E. Dewey - Seng Chan You - Paul Nagy

Received: 4 September 2023 / Revised: 10 November 2023 / Accepted: 14 November 2023 © The Author(s) 2024

Abstract

The rapid growth of artificial intelligence (AI) and deep learning techniques require access to large inter-institutional cohorts of data to enable the development of robust models, e.g., targeting the identification of disease biomarkers and quantifying disease progression and treatment efficacy. The Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) has been designed to accommodate a harmonized representation of observational healthcare data. This study proposes the Medical Imaging CDM (MI-CDM) extension, adding two new tables and two vocabularies to the OMOP CDM to address the structural and semantic requirements to support imaging research. The tables provide the capabilities of linking DICOM data sources as well as tracking the provenance of imaging features derived from those images. The implementation of the extension enables phenotype definitions using imaging features and expanding standardized computable imaging biomarkers. This proposal offers a comprehensive and unified approach for conducting imaging research and outcome studies utilizing imaging features.

Keywords Data collection (McSH) - Data standardization - Observational research - Data integration - Multimodal data analysis
OHDSI Shoutouts!

Collaborators from both the Columbia University Department of Biomedical Informatics and the Johnson & Johnson Observational Health Data Analytics team held a three-day studyathon this past weekend with a focus on women’s health initiatives, specifically endometriosis and polycystic ovary syndrome.
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
<table>
<thead>
<tr>
<th>Date</th>
<th>Time (ET)</th>
<th>Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>12 pm</td>
<td>Generative AI and Analytics</td>
</tr>
<tr>
<td>Tuesday</td>
<td>12 pm</td>
<td>Common Data Model Vocabulary Subgroup</td>
</tr>
<tr>
<td>Wednesday</td>
<td>8 am</td>
<td>Psychiatry</td>
</tr>
<tr>
<td>Wednesday</td>
<td>3 pm</td>
<td>Vulcan/OHDSI Meeting (ZOOM)</td>
</tr>
<tr>
<td>Wednesday</td>
<td>7 pm</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>Thursday</td>
<td>9:30 am</td>
<td>Network Data Quality</td>
</tr>
<tr>
<td>Thursday</td>
<td>12 pm</td>
<td>Strategus Subgroup</td>
</tr>
<tr>
<td>Thursday</td>
<td>7 pm</td>
<td>Dentistry</td>
</tr>
<tr>
<td>Friday</td>
<td>9 am</td>
<td>Phenotype Development & Evaluation</td>
</tr>
<tr>
<td>Friday</td>
<td>9 am</td>
<td>GIS – Geographic Information System</td>
</tr>
<tr>
<td>Friday</td>
<td>10 pm</td>
<td>China Chapter</td>
</tr>
<tr>
<td>Monday</td>
<td>10 am</td>
<td>Healthcare Systems Interest Group</td>
</tr>
<tr>
<td>Monday</td>
<td>11 am</td>
<td>Early-Stage Researchers</td>
</tr>
<tr>
<td>Monday</td>
<td>4 pm</td>
<td>Eyecare & Vision Research</td>
</tr>
<tr>
<td>Tuesday</td>
<td>9 am</td>
<td>OMOP CDM Oncology Genomic Subgroup</td>
</tr>
</tbody>
</table>
Join The Scientific Review Committee!

Would you be interested in helping shape #OHDSI2024?

We are actively seeking collaborators to join the scientific review committee. Please fill out the form in the chat or the community call page. Meetings will begin March 7, and the abstract review process will take place June 27-Aug. 9.
MS Teams Update
Spotlight: Kerry Goetz

Kerry Goetz is the Associate Director for the National Eye Institute’s Office of Data Science and Health Informatics at the US National Institutes of Health. In this capacity she is responsible for advancing data management and sharing strategies to make NEI data FAIR (Fully AI-Ready & Findable, Accessible, Interoperable, and Reusable). For over a decade, Kerry has been leading the eyeGENE Program, a controlled access resource with imaging, data, samples, and a participant registry for rare eye conditions. Kerry has also been entrenched in standards development for over 15 years.

Kerry co-leads the Eye Care and Vision Research Observational Health Data Sciences and Informatics Working Group, is a member of the American Academy of Ophthalmology Standards Working Group, and also works to aligning imaging standards and health data to enable groundbreaking research. She has been attending OHDSI meetings for many years but didn’t know how to truly get connected since she didn’t have access to any OMOP’d data. The NIH clinical center operates in a much different capacity. However, after connecting with other like-minded collaborators like Sally Baxter and Michelle Hribar, there was momentum to create a Eye Care and Vision Health Working Group.

In Kerry’s spare time, she enjoys traveling, snowboarding, camping, hiking, and biking and spending time with family, her two collies, or her Girl Scout Troop. She is also a PhD Candidate at George Mason University, studying Health Services Research with a Knowledge Discovery and Health Informatics Concentration. She discusses her career journey, evidence gaps around vision research, how OHDSI impacts her PhD journey, and more in the latest collaborator spotlight.

[ohdsi.org/spotlight-kerry-goetz]
February Newsletter is Available

The Journey Newsletter (February 2024)

The third year of Phenotype Phebruary has arrived! This newsletter looks at what OHDSI can achieve together in 2024, with a strong focus on evidence dissemination. We also preview Phenotype Phebruary and share how you can get involved. Check out more community updates, an impressive 16 publications related to OHDSI/OMOP, the latest community spotlight, and plenty more! #JoinTheJourney

Video: Evidence Dissemination Stands As Major Focus For Community in 2024

Phenotype Phebruary 2024
A collaborative study

Goal: A goal to understand what is the current practices in the field and how much researchers introduce variability in the process of phenotype development and evaluation.

Month-long collaborative study focused on assessing consistency in:
• Phenotype definition Components
• Phenotype representation structure
• Phenotype validation methods

Phenotype Phebruary Will Focus On Understanding Current Practices, Evaluating Four Community-Selected Phenotypes

“Phenotype Phebruary” is a community-wide initiative that began in 2022 and serves to both develop and evaluate phenotypes for health outcomes that could be investigated by the community.

The third edition of Phenotype Phebruary has begun, and the goals for this year’s activity are to inspire community engagement and collaboration, advance the science of phenotyping, and educate/train on the process of phenotype development and evaluation. Anybody in the community, regardless of your background or focus, can positively impact our efforts by joining the activity (see sign-up link below).

During the Jan. 30 Introduction to Phenotype Phebruary call, the community voted on four phenotypes to focus on throughout the month (Alzheimer’s, pulmonary hypertension, major depression disorder and prostate cancer). Each week, there will be systematic literature search and synthesis, replication using ATLAS and other OHDSI tools, and summarize variations in population characteristics like incidence rates.

January Publications

HADES Development Updates: CohortMethod 5.2.1

CohortMethod

CohortMethod is part of HADES.

Introduction

CohortMethod is an R package for performing new-user cohort studies in an observational database in the OMOP Common Data Model.

Features

- Extracts the necessary data from a database in OMOP Common Data Model format.
- Uses a large set of covariates for both the propensity and outcome model, including for example all drugs, diagnoses, procedures, as well as age, comorbidity indexes, etc.
- Large scale regularized regression to fit the propensity and outcome models.
- Includes function for trimming, stratifying, matching, and weighting on propensity scores.
- Includes diagnostic functions, including propensity score distribution plots and plots showing covariate balance before and after matching and/or trimming.
- Supported outcome models are (conditional) logistic regression, (conditional) Poisson regression, and (conditional) Cox regression.
HADES Development Updates: FeatureExtraction 3.4.0

FeatureExtraction

Introduction
An R package for generating features (covariates) for a cohort using data in the Common Data Model.

Features
- Takes a cohort as input.
- Generates baseline features for that cohort.
- Default covariates include all drugs, diagnoses, procedures, as well as age, comorbidity indexes, etc.
- Support for creating custom covariates.
- Generate paper-ready summary table of select population characteristics.

Technology
FeatureExtraction is an R package, with some functions implemented in C++.
FinOMOP - a population-based data network

PRESENTER: Kimmo Porkka

INTRODUCTION

• FinOMOP project aims at high-quality, granular mapping of key medical data sources (EMRs, registries, genome-sequencing projects; primary and secondary health care) to the OMOP CDM, for a comprehensive, population-based health data network in Finland

METHODS

1. OMOP CDM conversion projects were started 2019, funded by EU H2020 EHDIEN data partnership for all current data sites, and by local funds.
2. Primary care is covered by legislation-mandated population registries governed by the Finnish Institute for Health and Welfare (THL).
3. Secondary/tertiary health care is covered by 5 university hospitals; 3/5 have completed OMOP-conversion (>10% population) with the aim for a complete coverage by 2025.
4. FinnGen, a national public-private partnership-genome project, covers genome-wide data from 150,000 biobank participants.
5. Vocabulary mappings are coordinated through a shared Github repository, which version controls an USAGD file for each national vocabulary and is periodically transformed into concept and concept-relationship OMOP vocabulary tables.
6. ETL coding has been outsourced to EHDIEN-certified SMEs.

RESULTS

• Primary OMOP mapping of 4.1M Finnish patients has been completed, with a granular and comprehensive population of all the key OMOP clinical data tables.
Operational Definition of Adrenal diseases: Enhancing Precision and Reproducibility in Observational Data
(Suhyun Kim, Seung Shin Park, Seung hun Lee, Kwangsoo Kim, Junghee Kim)

Title: Operational Definition of Adrenal diseases
Subtitle: Enhancing Precision and Reproducibility in Observational Data

PRESENTER: Suhyun Kim

Background:
The rare incidence of adrenal disease prompts the conduct of research in the field of observational research. However, relying solely on diagnosis codes may not provide sufficient granularity and accuracy in capturing the complexity of adrenal disease, so the false-positive rate increases when patients are defined simply using diagnosis codes (e.g., ICD-10 or SNOMED). Therefore, this study proposes operational definitions for six adrenal diseases, and report on the positive predictive values (PPVs) of the proposed phenotypes to validate.

METHODS
1. Data source: Seoul National University Hospital Common Data Model (SCEDM, 6,300,000 subjects) and prospectively constructed registry data (3,296 subjects) for validation
2. We defined phenotypes using conditions, drug, procedure, and measurement based on OMOP standard terms by referring to two previous studies for evaluating adrenal diseases.
3. Registry data was used as the gold standard for verifying the accuracy of each disease phenotype.

RESULTS
• This is ongoing research
• The operational definitions framework successfully identified and classified different adrenal diseases.
• Sensitivity is from 0.783 to 0.999, and PPV shows performance from 0.833 to 0.999.

Conclusions
• The operational definitions of the six adrenal diseases presented in this study will be further validated for accuracy.
• We also plan to acquire additional data partners to robustly evaluate the generalizability to operational definitions.
• OHDSI tools such as PreValidator for evaluating phenotype algorithms and PHCDate for defining correct concept sets are being used to evaluate the robustness of phenotypes.
• We will use these tools to improve the accuracy of phenotyping for adrenal disease, facilitating clinical research utilizing the OHDSI network for adrenal disease.

We defined digital phenotypes for six adrenal disease.

#primary_aldosteronism #adrenal_cushing_syndrome
#pheochromocytoma_and_paraganglioma #adrenal_cortical_carcinoma
#nonfunctioning_adrenal_adenoma #mild_autonomous_cortisol_secretion

@OHDSI www.ohdsi.org #JoinTheJourney

TUESDAY

Take a picture to download the full paper
Validating a clinical informatics consulting service using negative control reference sets

(Michael Jackson, Saurabh Gombar, Raj Manickam, Robert Brown, Ramya Tekumalla, Yen Low)

Wednesday

Evaluating confounding adjustment when sample size is small

Background

Observational studies estimating causal effects are vulnerable to confounding because groups receiving different treatments may differ in important aspects. OHDSI studies typically rely on large-scale propensity score (LPS) models to adjust for these differences. When treatment groups are sufficiently large, LPS has proven to work well, both in terms of covariate balance and model-specific error measured using negative controls. However, little is known about LPS’s ability to adjust for confounding when treatment groups are small. To complicate matters, prior research shows that our ability to measure covariate balance — using the standardized difference of means (SDM) — degrades when sample size is limited.

Methods

To measure performance of LPS under small sample sizes, we take a large study population and randomly divide it into smaller partitions to simulate different data sizes, as shown in Figure 1.

Ground truth
- Lisonopi vs hydroxychloroquine (HCZ), with 76 negative controls
- Lisonopi vs metoprolol, with 76 negative controls
- Sibutramine vs glimepiride, with 94 negative controls
- Sibutramine vs glimepiride, with 94 negative controls
- For each partition:
 - Five negative controls

Metrics
- Expected Absolute Systematic Error (EASE) is computed by first fitting a Gaussian distribution to the estimated negative control hazard ratios, and then taking the expected absolute value of that distribution.
- Maximum standardized difference of mean (SDM) is computed by dividing the difference between the mean in T and C by the standard deviation for each covariate and taking the maximum of all absolute values.

Results

Several target-comparator-database combinations already show little confounding in the unadjusted analyses as measured by EASE. Here, locality-fitted propensity models did not make systematic error worse. When confounding was detected in the unadjusted analyses, LPS was able to adjust for confounding at all but the smallest sample sizes. No breakdown in performance as measured by EASE was observed when sample size >= 1,000. In many cases, sample size = 250 was sufficient.

Even though no confounding was observed (after adjustment) in most situations, max SDM always suggested large imbalance, meaning our balance metric does not function when sample size is small (<= 4,000).

Conclusion

Validating a clinical informatics consulting service using negative control reference sets

Contact: schuemie@ohdsi.org

@OHDSI www.ohdsi.org #JoinTheJourney
Impact of concomitant use of proton pump inhibitors and clopidogrel on cardiovascular adverse outcomes - A multicenter study using common data model

(Seonji Kim, Kyung Joo Lee, Seng Chan You, Seung In Seo)
#OHDSISocialShowcase This Week

FRIDAY

Leveraging the OMOP Common Data Model to Support Distributed Health Equity Research

(Sarah Gasman, William G. Adams)

Health Equity Explorer

- Translational informatics tool (R Shiny app) to support self-service exploration and visualization of:
 - Any computable health outcome
 - For a broad range of demographic, social, environmental and clinical drivers of health (SEDoH)
 - Via graphs, tables, maps, and statistical analysis (R)
 - Using open-use software, shared analytic code, common data models (OMOP) and a common data mart
Three Openings at Gilead

Sr. Director, Head of Data Office

Job Description:
As a Senior Director in our Data Office, you will play a pivotal role in shaping and executing our data strategy. In this leadership position, you will oversee and drive activities related to data sharing, governance, and access across the organization. Working closely with cross-functional teams, you will define and implement data acquisition policies and practices, ensuring the efficient and effective use of data to support our scientific and business objectives.

Director, Data Acquisition - Clinical Data Science

This role reports to the Head of Gilead data office, RWE Generation, Clinical Data Science and is based at different Gilead sites. This individual has responsibility for acquiring all data across clinical, development, medical affairs function and Gilead affiliates. This individual will work in close collaboration with the Development organization, Commercial, Procurement, Medical Affairs, IT, and other functions at Gilead in implementing data acquisition processes and is expected to operate with a “one Gilead” mindset & play a key role in the global Gilead Data Office set up.

Director, RWE - Data Science - OHDSI

Responsibilities:
Collaborate with researchers and data scientists to understand project requirements and translate them into OHDSI-compatible solutions. Work with databases, ensuring data integrity and optimization for OHDSI-related queries and analyses. Perform data analyses in OHDSI-related tools like ATLAS. Customize and extend OHDSI tools and applications to meet specific project needs. Collaborate with cross-functional teams to troubleshoot and resolve technical issues related to OHDSI implementations. Stay informed about OHDSI community updates, best practices, and emerging trends in observational health data research. Contribute to the development and documentation of data standards and conventions within the OHDSI community.
The Zhang Lab at Washington University School of Medicine in St. Louis has one postdoc/senior data analyst position to work on causal machine learning and responsible AI for reliable real-world evidence generation.

- More details at https://linyingzhang.com
 - Postdoc: https://linyingzhang.com/files/Postdoc.pdf
 - Data analyst: https://linyingzhang.com/files/Analyst.pdf
- If interested, please send CV and cover letter to linyingz@wustl.edu
Opening: Epidemiology UX/Web Design Intern at J&J

Epidemiology UX/Web Design Intern

<table>
<thead>
<tr>
<th>JOB TITLE</th>
<th>Epidemiology UX/Web Design Intern</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>Career Programs</td>
</tr>
<tr>
<td>SUB FUNCTION</td>
<td>Non-LDP Intern/Co-Op</td>
</tr>
<tr>
<td>LOCATION</td>
<td>Raritan, New Jersey, United States</td>
</tr>
<tr>
<td>DATE POSTED</td>
<td>Jan 19 2024</td>
</tr>
<tr>
<td>REQUISITION NUMBER</td>
<td>2406163977W</td>
</tr>
</tbody>
</table>

DESCRIPTION

Janssen Research & Development, L.L.C., a division of Johnson & Johnson's Family of Companies is recruiting for Epidemiology UX/Web Design Intern. This position is a member of the Observational Health Data Analytics (OHDA) team. OHDA's mission is to improve the lives of individuals and quality of healthcare by efficiently generating real-world evidence from the world's observational health data, transparently disseminating evidence-based insights to real-world decision-makers, and objectively advancing the science and technology behind reliable decision-making.
Opening: Research Information Specialist at UNC

Research Informatics Specialist

Responsibilities include:
* Perform SQL-based programming against UNC’s clinical data warehouse to identify patient cohorts and develop patient datasets.
* Consult with and collaborate with researchers to ensure programming work aligns with project needs.
* Develop ETL (extract, transform, and load) and data integration processes to support common data models (OMOP, PCORnet) using appropriate technologies (SQL, Python, or R).
* Carefully following UNC’s regulatory and governance policy to ensure data integrity and security.
* In collaboration with IDSci team, identify potential enhancements in current workflows and data architecture.
* Implement quality assurance strategies, such as data validation and peer code review.
* Write and maintain up-to-date supporting documentation. Ensure code is well-commented and use GitLab/GitHub to manage code changes and track data lineage.
* Provide technical leadership and direction for assigned projects and/or data requests.

Minimum Education and Experience Requirements

Master’s and 1-2 years’ experience; or Bachelors and 2-4 years’ experience; or will accept a combination of related education and experience in substitution.

This position requires two or more years of relevant work experience and:
* Expert-level knowledge of SQL programming, data modeling, and relational database systems such as Oracle, Microsoft SQL Server, MySQL, etc.
* Demonstrable past experience in scoping technical projects in terms of length of time, competencies and cost. Individual will be expected to manage multiple projects at once while delivering high-quality work on time.
* Excellent written and oral business communication skills. Public speaking at meetings and conferences may be required. The ability to clearly convey technical concepts to non-technical clients is a must.
Opening: Data Steward at EBMD

Description
Are you looking for a job where you can make a difference and work in a non-profit? Would you like to be a part of an ambitious and international organisation on the cutting edge of science? Then this position might be right up your alley.

The EBMT is a non-profit medical and scientific organisation which hosts a unique patient registry providing a pool of data to perform studies and assess new trends.

OUR MISSION
Save and improve the lives of patients with blood-related disorders.

The Registry
Holding the data of over half a million patients, the EBMT registry is the starting point for all studies carried out through the EBMT working parties. The department focuses on data collection processes, data quality monitoring, and maintenance of the database.

YOUR MISSION
Responsible for collecting, collating, and evaluating issues and problems with data and enforcing data usage policies.

RESPONSIBILITIES AND TASKS

Data Stewardship:
- Design, implementation and testing of new data collection processes including data collection forms (DCFs) development.
- Take care of the mapping of new items from DCFs to the OMOP CDM
- Providing input on data quality reports
- Check and clean data on request and ad hoc.
- Data retrieval including designing data reports and data report running.
- Carry out computerized system validation activities.
- Supporting consolidation/harmonization of data
- Creating standard data definitions, and maintain a consistent use of data assets across the organization
- Documenting data policies and data standards
Where Are We Going?

Any other announcements of upcoming work, events, deadlines, etc?
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
Methods Workgroup mission

Empower real-world evidence generation through **collaborative innovation** in **statistical and computational methods**
Methods Workgroup objectives and key results

• Promote awareness and collaboration in methods research
 • Maintain a comprehensive directory of ongoing methods research Martijn
 • Have at least 6 presentations of ongoing methods research (i.e. work that hasn't been published yet) Martijn
 • Average attendance of meetings >= 20 researchers Martijn

• Align research topics with the needs of the OHDSI community
 • Perform a survey to elicit community needs Linying
HADES mission

Enable the OHDSI community to perform observational research following OHDSI best practices for characterization, population-level estimation, and patient-level prediction by providing a cohesive set of open-source analytic software.
HADES objectives and key results

• More user involvement
 • Get post-mortems on 2 network studies, analyzing what worked well and what didn’t. Martijn

• Document interfaces
 • Fully document Strategus inputs JPG, Chris
 • Fully document results schema Hayden
 • Manifest describing rules for database platform support Katy, Hayden

• Better testing
 • Establish an automated procedure for determining which packages uses which testing servers Martijn

• Strategus
 • Get Strategus into HADES Anthony, JPG
 • Less painful installation of Strategus Anthony
 • Containers + execution engine Anthony, Evan

Key result lead
Perinatal & Reproductive Health (PRHeG) 2024 OKRs

• Our **purpose** is to develop tools and standards for pregnancy and reproductive health research to foster collaborative studies within the OHDSI network, and advance research in this field generally.

• **Objectives and key results**
 • Develop and share phenotypes for key perinatal and reproductive health factors to enable research using diverse data sources.
 • Provide training and education to perinatal and reproductive health researchers interested in OHDSI projects.
 • Extend existing work to identify pregnancy episodes in data in the OMOP CDM using additional data sources e.g. EHR data.
 • Improve the transformation of data from pregnancy-specific EHR modules into the OMOP CDM.
Registry Workgroup

Tina Parciak
OKR 2024 of the Registry WG

Objectives:

Our workgroup wants to

- Build a network of registry stakeholders (data owners, ETL, project managers...) of existing or emerging OMOP-ed registry datasets to
- Support on-going or new initiatives in transforming registry data to the OMOP CDM.
- We want to enable this support through accessible documentation on GitHub, result dissemination on conferences, CC or in journals and dedicated workgroup discussions.
OKR 2024 of the Registry WG

Key results:

- Overview: Differences between EHR data vs. Registry ("curated") data
- Overview: challenges in mapping registry ("curated") data to the OMOP CDM
 - Generate list of challenges
 - Prioritise items
 - One challenge per 1-2 workgroup meetings
- Documentation of challenge, discussed solutions, recommendations (e.g. for changes in the vocabulary) or conventions for transformations
 - GitHub page
 - Manuscript for journal and/or OHDSI conference
Steering Workgroup
co-leads: Patrick Ryan, George Hripcsak

Purpose: Steering WG exists to support the community and its leaders in collaboratively generating the evidence that promotes better health decisions and better care, by identifying, organizing, and guiding collaborative activities, facilitating communications across the community, providing input to operations of the OHDSI Central Coordinating Center, and building consensus on the vision for where the OHDSI community should go together.

Objective 1: Empower workgroups to contribute to collaboratively generating the evidence that promotes better health decisions and better care
 Key results:
 1. 100% of active workgroups have defined purpose and 2024 OKRs that are communicated to broader community to promote focus and encourage contributions; Timeline: 1Q2024
 2. 1 Workgroup Leader Summit convened to ensure appropriate communication across workgroups; Timeline: 1Q2024

Objective 2: Create collaboration activities that encourage collaborative generation and dissemination of the evidence that promotes better health decisions and better care
 Key results:
 1. OHDSI2024 Global Symposium scheduled with location/dates announced; Timeline: 1Q2024
 2. 3 community activities with >30 collaborators participating: 1- Phenotype Phebruary, timeline: Feb2024;
The weekly OHDSI community call is held every Tuesday at 11 am ET.

Everybody is invited!

Links are sent out weekly and available at: ohdsci.org/community-calls