

APAC Scientific Forum

February 1, 2024

Agenda

- Results of survey on support areas
- Plans for 2024 Q1
- APAC study updates

Overview on Survey Results

everyone librarydevelpoment prognostic answer means, sops stereotypic stepbystep studylevel omopdeatablishing with the stereotypic stepbystep ophthalmology orm configured esting visual tremendously previous workgroup types criteria another https:napsnomedtoolsorg pipelines paediatric evisting evision bettension decisions nans publish modified stratification 15 respondents publish medication paediatric existing Sextension moment probably doseinformation subsets impairment medical arent google management indigenous alternatives deescalation others supporting chemotherapy generalizable 're currently good covariants a participate part talk now people of developmentanswered imaging patterns participate apply helpful datasets of representation vocabulary practical tutorials explaining software dispases of current control of the software dispases of the softwar thank graphs affect code works partners omop format practice labelingsoon cognitive errors open want cdm ohdsi prediction wish there mui decides model analytics research github affiliation column explore basic convention forgot groups approaches LICS research github affiliation columbia ≿stable ∯best sharing a pvalue to c free >-- package wide covid simple sites toolsand Can n biť S the eady australia familiar backgriund Sworking using numbers 6 make pregnancy techn involved extend focused julia exciting vocabularies emainrgin genomics ethics guess helps help dqd make pregnancy techniques ata ale CO ē exist beneficial turned ect across underlying raw issue formfacilities like ⁵etc i'm but long norwegians metadata new azure minimum. willing once d region collaborators pped ₽ σ terminologies patients variables snd dea coding logic expandianguage 등 C details definition business^e protocols learn na S rabbit standards abcalso Q-will mean conventions since analysis important find yet rather frequency capacity most analyses a systems beacons notevery queries studies . Yes spread community Sfinal datashield rateß discover cancer meant hat gaps∈ particular very comment etl forum ive discuss a staging B be SUPPORT who result asked without a staging to be algorithms identify ingest study paper diverse approach Tederated aws postgresql 8 2 amodels still any estimation less_ runsure learning going E actually Individualleve mapping glarge entry g nlp = answering Ediversity training related partner understand edited area exactly answering Ediversity training related partner understand edited area exactly and the some how framework emission just example chealthcare fix area exactly area ex diabetes 🗟 ⊒ strength framework emrs conversion stright knowledge standard haematology packages 5 databases sourcegot individual of similar build sharepoint teaching characterization of teaching teaching dashboard complimentary putting regarding %discussion almostright knowledge standard 믿늉 uses institutions slowly competencies 8 negative 🖉 pilot modifiers impact phappy along ≅may keep changing encounter codes parameter validate common work facilitated 금도 control facing abstractionsworked organize whole

Survey Results – Uniform Data Representation

- Community is interested:
 - ETL, especially around ETL conventions
 - Vocab mapping: Usagi
 - Data Quality Dashboard
 - Extension Models

Survey Results – Data Analytics

- Community is interested in:
 - Operations: initiating network studies, finding partners, sharing outputs
 - Trend: Running R packages >
 Using ATLAS > Develop R
 packages

Self-learning Topics

Common themes observed in free-text responses	Suggested learning areas
Basic knowledge of OHDSI/OMOP Eg. What is characterization? What is estimation?	Book of OHDSI (English): https://ohdsi.github.io/TheBookOfOhdsi/
	Book of OHDSI (Korean): <u>https://www.medicalplus.co.kr/book/book_view.asp?GCCD=&ORDER_CD=&G</u> <u>CODE=208900000069&PG=1&ORDER_DIV=&PAGE_ITEM_CNT=20</u>
	Book of OHDSI (Chinese): https://www.ohdsi.org/wp-content/uploads/2021/02/OHDSI-B5- 2020%E6%9C%80%E7%BB%88%E7%89%88.pdf
	Amazon (Paperback): https://www.amazon.com/OHDSI-Observational-Health-Sciences- Informatics/dp/1088855199

Self-learning Topics

Common themes observed in free-text responses	Suggested learning areas
High level OMOP workflows and working examples of ATHENA, USGAI, ATLAS, R packages.	OHDSI YouTube Channel: https://www.youtube.com/@OHDSI/videos EHDEN Academy: https://academy.ehden.eu/course/index.php?categoryid=all
Functional competencies - Writing R packages/running R packages, ETL steps in PostgreSQL.	DataCamp: https://www.datacamp.com/ Udemy: https://www.udemy.com/

Plans for 2024 Q1

Date	Торіс	Speaker(s)	Affiliation
February 1	APAC Study Updates	Seng Chan You Ivan Lam	Yonsei University The University of Hong Kong
March 7	Perseus Intro & Demo	Anton Ivanov Anna Kovru	Software Country
April 4	Genomic Data Mapping	Erwin Tantoso	A*STAR

CHAPTER Characterization of Health by OHDSI **AP** chapter to identify Temporal **E**ffect of the **P**andemic

- 2024.02.01
- Seng Chan You

2. Method

3. Result

4. Discussion

2.Method

3.Result

4. Discussion

• Coronavirus disease 2019 (COVID-19) was declared as a pandemic by the WHO on March 11,

Governments all over the world introduced unprecedented restrictions

Year	2020 (0.2%)	2021 (1.8%)		2022 (92.2	%)	Mar. 2023 (5.8%)
Covid-19 variants	Before pander	nic crisis (-Oct. '21)	Delta (Jan.'22) Omicron BA.5 (Jul. Sep:22) Winter pandemic (Oct.'22-)			
Covid-19 quarantine	Strong: Quarantine	Relaxation of quarantine	Life quarantine			
Covid-19 strategy	3T strategy (Test, Trace, Treat)					
Vaccination	1st Vaccination Feb. 26. '20-Oct.31. '20 (70%)	2nd Vaccination	3rd/4th Vaccination 2 strains vaccination (Oct-)			
Treatment	Severe symptoms: Intensive care unit Quarantine Self-care (Jan.28. '22), home (Feb.7. '22) quarantine					
National Health Insurance coverage	 - NHI coverage 40 items (Test, vaccine, treatment etc.) - Telemedicine service: temporary coverage(Mar.2. '20-') - Administrative order of hospital bed 					
Social distancing	Initiation (Feb. 26. '20)		Relaxation (Jan. '22)		n. '22)	Cancel (Apr. '22)
Mask	Self care/obligation (Oct. '20)			ommendat door (Sep.2		Recommendation for indoor (Jan.17. '23)

Figure 2. Healthcare policy of coronavirus disease 2019 (COVID-19) in Korea. Source: https://ncov.kdca.go.kr/, MOHW (Ministry of Health and Welfare), 2023.

Policy distribution by category and month. Distribution of policies globally.

By the impact of COVID-19, many non-COVID-19 diseases' health care utilization were affected.

Changes in Health Services Use Among Commercially Insured US Populations During the COVIDhttps://jamanetwork.com/journals/jamanetworkopen/article-abstract/277253719 Pandemichttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997416/

Frequency of non-communicable diseases services during the COVID-19 pandemic compared to the same period prior to the pandemic

- But, there was no study that assesses the impact of COVID-19 for long term follow up
 - To manage non-COVID-19 health conditions after the pandemic
 - To help mitigate adverse knock-on healthcare impacts of the pandemic
- Objective
 - Analysis of the incidence and prevalence of diseases before and after the COVID-19 outbreak and changes in the patterns of healthcare use
 - Understand the impact of the spread of COVID-19 on the incidence and prevalence of major diseases and changes in medical use patterns

2. Method

3.Result

4. Discussion

Monthly incidence rate (per 10¹¹ person-year)

 $\frac{\text{No. of new cases of a disease occurring in the population during a certain month}}{\text{Sum of Person - Year in a certain month}} \times 10^{11}$

Monthly prevalence rate

 $\frac{\text{No. of cases of a disease present in the population during a certain month}}{\text{No. of persons in the population during a certain month}} \times 100$

Monthly hospital visit(+ 3 types of epidemiology index)

No. of visits of a disease present in the population during a certain month

Sum of days during a certain month

Outcome

Inpatient hospitalization

Emergency room visits

All cause mortality

Methodological Challenge – Calculating monthly incidence/prevalence based on PLP

1) Require minimum time-at-risk for all person in the target cohort

Figure 1: The prediction problem

5) Include all persons in target cohort exclude persons with prior outcomes

6) Include all persons in target cohort

2) Require minumum time-at-risk for target cohort, except for persons with outcomes during time-at-risk.

ARGOS: Automated Report of Global Observation and Surveillance

Argos

An R package for assessing the trends in incidence and outcome of the user-defined condition based on OMOP-CDM

Under-development

Do not use

Poster

Github.com/OHDSI/ARGOS

createDenominatorSettings <- function(washoutPeriod = 0, # in days</pre>

sampleSize = 0, #It would be highly unusual to set sample size in denominator useObservationPeriod = FALSE, cohortId = NULL, startDate = "", #character endDate = "", #character firstExposureOnly = F, requireDenominatorPeriod = F, minDenominatorPeriod = 0, # in days denominatorDescription = "" #optional

Drawn by DALL-E

Method – Statistical analysis

- Interrupted time series analysis
- Definition : A Valuable study design for evaluating the effectiveness of population-Level health interventions that have been implemented at a clearly defined point in time
- Evaluating the effectiveness of interventions by comparing potential outcome that will be observed when the interventions were not implemented

nterrupted time series regression for the evaluation of public health interventions: a tutorial - PMC (nih.gov) Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series | BMC Medical Research Methodology | Full Text (biomedcentral.com

Method – Data source

Data source

- Electronical medical records(EMR) from Severance hospital in Yonsei University Health System, Republic of Korea
- EMR is converted to OMOP CDM between January 2017 and July 2023

Method – Study design

- Study design
 - Cross sectional study
- Intervention point
 - Immediately after the start of the first COVID-19 pandemic(2020.03) in Republic of Korea

Method – Study population

- Patients who visited Severance hospital with an observation period of more than 1 year
- The following 11 non-communicable diseases are selected as study population
 - Acute myocardial infarction with inpatient admission
 - Asthma or Chronic obstructive pulmonary disease(COPD)
 - Atrial fibrillation
 - COPD without asthma
 - Hypertension
 - Kawasaki's disease
 - Major depressive disorder
 - Stroke with inpatient admission
 - Tuberculosis
 - Type 2 diabetes mellitus(T2DM) or history of diabetes

2.Method

3. Result

4. Discussion

Results – Incidence rate

Category	Level (95% Cl)	Slope (95% Cl)	Up/Down/-
Kawasaki's disease	-2.00	0.10	Level down
	(-3.10 to -0.80)	(0.04 to 0.17)	Slope Up

Results – Incidence rate

Circulation

RESEARCH LETTER

Reduction in Kawasaki Disease After Nonpharmaceutical Interventions in the COVID-19 Era

A Nationwide Observational Study in Korea

Ji-Man Kang, MD*; Young-Eun Kim[®], PhD*; Kyungmin Huh, MD; Jinwook Min Young Kim, RN; Se Yong Jung, MD; Jong-Hun Kim, MD; Jaehun Jung

Results – Healthcare utilization

Results – Healthcare utilization

Date

Results – Healthcare utilization

Further discussion

- Add the results for prevalence
- Resilience
 - How to set definition of resilience
 - How to measure the degree of resilience
 - How to sort out the result of the degree of resilience

OHDSI APAC Study 2 – Comparison of mortality, morbidities & healthcare resources utilisation between patients with and without a diagnosis of COVID-19

> OHDSI APAC Scientific Forum 1st February 2024

Background

- COVID-19 infection is associated with a range of clinical sequelae and associated mortality.¹
- The risk of clinical sequelae remained unclear owing to the large variability in risk estimates from existing studies which differs in study design, population and selection of controls.²
- The persistent in risk of clinical sequelae associated with COVID-19 also remains unclear.
- This study aimed to evaluate the risk of short-, medium-, and long-term clinical sequelae following COVID-19 using multi-national healthcare data

Methods

Study Design

COVID-19 (Target) Cohort:

- Have a record of a first positive test or diagnosis for COVID-19 or during the inclusion period
- Index date will be defined the date of positive test or diagnosis of COVID-19

Non COVID-19 (Comparator) Cohort:

- Do not have a record of a COVID-19 test or a positive test for COVID-19 during the inclusion period
- Matched to subjects from the COVID-19 cohort

Follow-up period:

Follow-up until the outcome event, mortality, censoring for lost to follow-up and end of study period. For non COVID-19 group, people will be censored if they got COVID-19 infection.

Updates since pilot study

- 1. Period of time at risk
- 2. Cohort definition for COVID-19 (Target) Cohort
 - Included further <u>concepts</u> and <u>values as concept</u>

Analysis Settings										
	Show 10 V entries									
	Remove	Description 🔻	Time At Risk Start	Time At Risk End						
	×	Short-term	0d from cohort start date	180d from cohort start date						
	×	Medium-term	181d from cohort start date	365d from cohort start date						
	×	Long-term	366d from cohort start date	730d from cohort start date						
	Showing 1	to 3 of 3 entries								

a measurement of [ACESO_P1] SARS-CoV-2 test 👻					
X occurrence start is: between V 2019-12-01 and 2020-12-01					
X Value as Concept is: X Detected X Detected X Positive X Positive X Present X Present X Abnormal X Outside reference range X Potentially abnormal X High X High Add Import					
a condition occurrence of [ACESO_P1] COVID-19 -					
X occurrence start is: between ✓ 2019-12-01 and 2020-12-01					
A having any V of the following criteria:					
with exactly V 0 V using all occurrences of:					
a measurement of [ACES0_P1] SARS-CoV-2 test +					
X Value as Concept is: X Negative X Not detected X Not detected in pooled specimen X Absent X Negative X Not detected X Absent X Normal Add Import					
where event starts between					
0 ▼ days Before ▼ and 3 ▼ days [After ▼ index start date] add additional constraint					
The index date refers to the condition occurrence of [ACESO_P1] COVID-19.					
restrict to the same visit occurrence					
allow events from outside observation period					

Updates since pilot study

- 3. Obtained results from **France**, **Italy**, **Germany** and **UK** databases
- 4. Meta-analysis to pool study results from individual databases

synthesizeResults: Conducts a meta-analysis across PLE result sets

In OHDSI/SkeletonComparativeEffectStudy: A Package Skeleton for Comparative Effectiveness Studies

View source: R/MetaAnalysis.R

Study Population

			Short	Medium	Long
Patients with COVID-19 (targets) Patients without COVID-	France	Target	45,500	37,671	32,608
19 (comparators)	LPD	Comparator	306,653	256,600	221,793
Exclude Individuals with: • A history of outcome of	Italy LPD	Target	5,959	4,723	4,016
interestLess than one day at risk		Comparator	34,414	27,387	23,396
1:10 Propensity-score	Germany	Target	16,338	13,972	12,466
matching	DA	Comparator	110,892	91,546	79,484
Exclude Individuals who were	UK IMRD	Target	34,977	29,783	26,291
not selected during propensity-score matching		Comparator	304,707	256,973	223,860
Study population for	Total	Target	102,774	86,149	75,381
separate clinical sequelae	IUIdI	Comparator	756,666	632,506	548,533
Figure 1. Flow diagram on the selection of study population Table 1. Number of patients included for analysis of cardiovascular disorder from separate databas and observation windows					

Hazard ratio

Hazard ratio

Hazard ratio

Meta-analysis

Hazard ratio of CS by age

Hazard ratio of CS by sex

Summary

- Consistent with existing literatures, evidence supported an increased risk of clinical sequelae in the short-term.
- A reduction in risk of clinical sequelae was observed in the medium and long term
- Meta-analysis of results from individual databases will allow for more reliable evidence and clearer representation of research findings

Going Forward

- Obtain results from the US database
- Summarise findings and prepare the manuscript

Acknowledgement

• IQVIA

– Xiaoyu Lin, Yin Can, Jing Li

- HKU
 - Yi Chai

Thank you!