

APAC Community Call

March 21, 2024

Agenda

- OHDSI News: April Olympians by Clair Blacketer
- OHDSI Evidence Network by Clair Blacketer
- Vocabulary Contribution from Korea by Seng Chan You
- Upcoming OHDSI/OMOP Events in APAC

Introducing the April Olympians

CDM & THEMIS Collab-a-thon

Melanie Philofsky & Clair Blacketer

Current State of Conventions

- CDM and THEMIS conventions are housed on the CDM website, CDM github, THEMIS github and OHDSI forum.
- This does not provide users with concise and clear documentation on the how to standardize their data
- The correct approach is often ambiguous

Goals of the Collab-a-thon

- 1. Identify all *currently ratified* CDM and THEMIS conventions for every CDM table and field.
- 2. Write clear documentation for each THEMIS convention
- 3. Establish a repository for THEMIS conventions
- 4. Update the CDM documentation to link to relevant THEMIS repository entries
- 5. Create CDM documentation related to expansion module efforts around the community

Teamwork Makes the Dream Work

Hunters of Artemis

Writers of Apollo

Builders of Hephaestus

Hunters of Artemis

- On the hunt for ratified conventions
- This group will systematically search OHDSI resources by table and field
- They will then open github issues sharing critical information for each one they track down

Writers of Apollo

- Will pick up each convention the Hunters find
- This group will systematically fill out a template designed to house important information about the convention
- They will then tag the github issues for the next group

Builders of Hephaestus

- Responsible for building the repository
- Will take the written information given by the writers and incorporate the convention into the repository
- This group will also clean up the CDM website by removing any duplicate information and linking out to the THEMIS repository

Expansion Module Owners

- You will be responsible for either creating documentation for your tables similar to the existing CDM docs or providing information on the tables under construction and how people can participate
- This includes:
 - GIS
 - Medical Imaging
 - Oncology*

^{*}While the Episode and Episode Events tables are in the canonical CDM, there are some outstanding articles and missing information

Please Join Us!

- To sign up for one of the teams, please scan the QR code and indicate your team preference
- The time commitment is as much or as little as you want
- The idea was to create discrete pieces of work so you can pick and choose how much you would like to do
- No technical skills necessary! If you can google you can hunt!

OHDSI Evidence Network

Clair Blacketer

Lead, CDM Workgroup Lead, Network Data Quality Workgroup

Why are we here?

Why are we here?

Regulatory Guidelines

Considerations for the Use

- FDA recognizes that evaluation of relevant data sources or databases is an important step in the design of a study and in evaluating a study's feasibility. Such evaluations of data sources or databases for feasibility purposes serve as a way for the sponsor and FDA to (1) assess if the data source or database is fit for use to address the research question being posed and (2) estimate the statistical precision of a potential study without evaluating outcomes for treatment arms.
- Sponsors should describe in the study protocol, or as an appendix to the protocol, the data sources evaluated when designing the study, including results from feasibility evaluations or exploratory analyses of those data sources. Sponsors should provide a justification for selecting or excluding relevant data sources from the study. Sponsors should also

describe how the choice of the final data sources, study design elements, and analytic approaches aligns with the research question of interest and that the data sources, study design elements, and analytic approaches were not selected to favor particular study findings.

Pillar #2: Standardized data network

- Opportunity: Increase transparency and maturity of OHDSI data network
- Proposed solutions:
 - Create OHDSI data network catalog to encourage network studies across interested partners and promote data quality practices
 - Generate OHDSI network concept prevalence data and make accessible for ATLAS users to enable more generalizable phenotype development
 - Promote database diagnostics by having data partners share limited subset of ACHILLES to allow for users to identify databases that satisfy study criteria

What is Database Diagnostics?

R package that allows us to determine...

...which databases have the elements required to answer a research question...

...using only a set of aggregated summary statistics.

Save our Sisyphus Challenge

Amongst people with psoriasis, does exposure to Risankizumab increase the risk of cerebrovascular events while on treatment relative to other biologic therapies?

Characterization: incidence of progressive multifocal leukoencephalopathy (PML) during Multiple Sclerosis (MS) biologic exposure

Lead: Thamir Alshammary

OHDSI Save Our Sisyphus Challenge

Lead: Zenas Yiu

Population Estimation: Comparative safety:

Amongst people with psoriasis, does exposure to Risankizur the risk of venous thromboembolism while on treatment other biologic therapies?

Zenas Yiu

Clinical Senior Lecturer in Dermatolog

Introductory Video

Introducto

MS Teams Channel

GitHub

Intravitreal Anti-VEGF and Kidney Failure

Lead: Cindy Cai

OHDSI SOS Challenge: Intravitreal Anti-VEGF and Kidney Failure

Cindy X. Cai, MD
The Jonathan and Marcia Javitt Rising Professor
Assistant Professor of Ophthalmology
Retina Division, The Wilmer Eye Institute
Johns Hopkins University School of Medicine

3/7/2023

Introductory Video

Introductory Slides

MS Teams Channel

GitHub Repo

Introductory Slides

GitHub Repo

Introductory Video

MS Teams Channel

SOS Database Diagnostics Results

Inaugural Data Sources of the OHDSI Evidence Network

Ajou University · Ajou University

Casa di Cura Igea • Casa di Cura Igea

Clinical Center of Montenegro • Clinical Center of

Montenegro

Columbia University Medical Center • Columbia

University Medical Center

University College London · UK THIN

IQVIA · Australia EMR

IQVIA · Disease Analyzer France

IQVIA · Disease Analyzer Germany

IQVIA · Japan Claims

IQVIA · Japan HIS

IQVIA · Longitudinal Patient Database (LPD) in Belgium

IQVIA · Longitudinal Patient Database (LPD) in France

IQVIA • Longitudinal Patient Database (LPD) in Italy

IQVIA · Longitudinal Patient Database (LPD) in Spain

IQVIA · OMOP US Hospital Data Master

IQVIA · Pharmetrics Plus

IQVIA · UK Medical Research Data EMIS

IQVIA · UK Medical Research Data THIN

IQVIA · US Open Claims

Janssen Research & Development · JMDC

Janssen Research & Development • Merative®

Marketscan® Commercial Claims and Encounters

Janssen Research & Development • Merative®

Marketscan® Medicare Supplemental

Janssen Research & Development • Merative®

Marketscan® Multi-State Medicaid

Janssen Research & Development • Optum's

Clinformatics® Data Mart - Date of Death

Janssen Research & Development • Optum's

Clinformatics® Data Mart - Socio-Economic Status

Janssen Research & Development • Optum's

Longitudinal EHR Repository

Janssen Research & Development • Premier Healthcare

Database

Johns Hopkins University • Johns Hopkins University

National University of Singapore • National University of

Singapore

Northeastern · IQVIA Pharmetrics Plus

Organization Name • Data Source Name

Taipei Medical University • Taipei Medical University

Tufts University Medical Center • Tufts University

Medical Center

University of Nebraska Medical Center • University of

Nebraska Medical Center

University of Southern California · Keck Medical Center

US Department of Veteran's Affairs • US Department of

Veteran's Affairs

Yinzhou Bigdata Platform • Yinzhou Bigdata Platform

APAC Community call: Vocabulary Contribution(Korea)

Seng Chan You

March 21, 2024

Topics

- What is **OHDSI Standardized Vocabularies**?
- Introduce the Korean EDI Vocabulary
- Create a Semi-automated process : EDI to OHDSI package
 - The advantages of incorporated EDI
- Process for Data Integration in ATHENA

What is OHDSI Standardized Vocabularies?

- OHDSI Standardized Vocabularies is a collection of public standard vocabularies used in the OHDSI network.
- It consolidates a system of Vocabularies, Classifications, Domains, and Concepts into a **common format** and stores them in **a set of CDM tables**.
- It enables the application of standardized large-scale analytical methods in a federated setting.

What is OHDSI Standardized Vocabularies?

- Standard Concept (standard_concept = 'S')
 - Official representation of unique clinical entities, recorded with their concept IDs in designated fields.
 - Typically sourced from well-established vocabularies like
 SNOMED, ensuring clear definitions and comprehensive coverage.
- Classification Concept (standard_concept = 'C')
 - Have a hierarchical relationship to Standard Concepts.
 - Can be used to query for Standard Concepts using the records of CONCEPT_ANCESTOR table.
- Non-standard Concept or Source Concept (standard_concept = NULL)
 - Entities that are neither Standard or Classification Concepts.
 - Only appear in the source_concept_id fields of data tables.
 - Each Non-standard Concept is mapped to one or more Standard Concepts.

Introduction of EDI

- **EDI** (Electronic Data Interchange) is a code system for the reimbursement or claim data in Korea.
- EDI concepts are divided into drugs, devices, and medical services.
- EDI is developed and maintained by **HIRA** (Health Insurance Review & Assessment Service), **updated on the 1**st **of every month**.
- The number of EDI codes by domain announcement on October 1, 2023 is as follows.

	Drug	Device	Medical Service
Number of EDI codes	65,637	44,453	457,740

Introduction of EDI

- Despite widespread adoption in Korean EHR systems, limitations still persist.
 - Validity dates are not recorded in the official monthly announcement.
 - There are expired or replaced EDI code and outdated EDI can be assigned to new concepts.
 - EDI has duplicated identifiers due to the lack of a unified encoding system across domains.

OUR GOAL IS ...

To enhance EDI vocabulary for a controlled and standardized vocabulary system

For this purpose, we incorporated the EDI into OHDSI vocabulary using a semi-automated process.

- EDI to OHDSI package is a semi-automated process we made.
- This package makes EDI vocabulary as a Source Concepts using OHDSI table structure.
- There are four main steps to incorporate EDI into OHDSI standardized vocabulary.
 - Improved the classification of EDI domains and separated medical services into procedures and measurements
 - 2 Assigned a unique identifier and validity dates for each EDI concept
 - Built a vertical hierarchy between EDI concepts
 - 4 Added an English definition for each EDI concept using Google Translation

- Improved the classification of EDI domains and separated medical services into procedures and measurements
- EDI concepts are divided into Drugs, Devices, and Medical Services.
- The scope of Medical Services is too broad for the OHDSI standardized vocabularies.
- So, we subclassified Medical Services into **Procedures** and **Measurements** to match the OHDSI domains.

2 Assigned three attributes for each EDI concept

Attributes: Valid start date, Valid end date, Invalid reason

- Valid start date, Valid end date
 - When an EDI concept is newly registered or deprecated, the term's date is updated or expired.
- Invalid reason
 - If a concept is valid → invalid reason : NULL
 - If a concept is replaced by another concept or deleted \rightarrow invalid reason : U or D

Concept code	Valid start date	Valid end date	Invalid reason
A29506361	2008-04-01	2099-12-31	NULL

Concept code	Valid start date	Valid end date	Invalid reason
A29506361	2008-04-01	2010-01-31	U
670600010	2010-02-01	2099-12-31	NULL

- **Built a vertical hierarchy between EDI concepts**
- We built a formal vertical hierarchy for EDI concepts as ICD-9 or ICD-10 code system.
- The first five digits of the EDI code in the medical service domain (procedure, measurement) represent the ancestor terms for longer descendent EDI code.

Concept code	Concept name	Ancestor concept code	
HC281	Whole Body Scan		→ ancestor
HC281006	Whole Body Scan, Nuclear Medicine and other physician reading	HC281	
HC281300	Whole Body Scan, Under 8 years old	HC281	
HC281306	Whole Body Scan, Under 8 years old, read by nuclear medicine physician	HC281	descendent
HC281600	Whole Body Scan, Under 72 months	HC281	
HC281606	Whole Body Scan, Under 72 months, Nuclear Medicine physician reading	HC281	

- 4 Added an English definition for each EDI concept using Google Translation
- You have to add an English definition for each EDI term.
- We utilized Google Cloud Translation API for the initial translation.
- Inaccurately translated words underwent **review by nurses** and were retranslated.

Korean definition	Using Google Translation API	Using Google Translation API With glossary
M핵산증폭-정량그룹1_B형 감염바이러스 [중합효소연쇄반응교잡반응법]	Nucleic acid amplification-quantitative group 1 hepatitis B virus [polymerase chain reaction hybridization method]	Nucleic acid amplification-quantitative group 1_HBV [PCR-Hybridization]
단기사용담관용튜브·카테터	Short-term use bile duct tube and catheter	Cahteter, bile duct short-term use

The advantages of Incorporated EDI

Terminology evaluation criteria and explanation

	Criteria	Explanation	EDI vocabulary	EDI in OHDSI vocabulary
Uniqueness and	Concept orientation	A concept must be linked with only one term		0
exclusivity of the concept	Non-semantic concept identifiers	There must be a unique code representing a concept	X	0
	Coverage	The domain covered by the terminology system must be consistent and obvious	0	0
	Synonyms uniquely identified and mapped to relevant concepts	Synonyms, including abbreviations are managed by unique identifiers, and related concepts are mapped		0
Hierarchies and	Relation	The relation of each concept should be defined	X	0
relationships between concepts	Multiple hierarchy	A concept can have multiple hierarchies	X	Δ
	Formal definition	Having a structure and definition that can be indexed and processed by computer	X	0
	Compositionality	Terms can be separated into atomic units and have compositional extensibility	X	X
Management system	Concept permanence	Even if the used term is updated, the previously used term should not be deleted	X	0
for vocabulary	Version control	When terminology is updated, version information, including changes, must be specified	X	0
	Multi-language	The terminology system supports multiple languages	Δ	0

- All criteria except compositionality, indicate that converted EDI demonstrates a higher quality index than the original EDI.
- Users can easily search for related concepts using formal English definitions within Athena.
- Users can activate versioning by storing metadata that indicates the start and end dates for each concept.

- We successfully incorporated 313,431 EDI codes of Korean medical information in 2019.
- Now, our objective is to expand not only the incorporation of EDI vocabularies but also add mapping with Standard Concepts.

	Non-standard Concepts	Standard Concepts
Drug	EDI	RxNorm RxNorm Extension
Device	EDI	SNOMED
Procedure	EDI	1) SNOMED 2) LOINC
Measurement	EDI	1) LOINC 2) SNOMED

- For the integration, you need to adhere to the Community Contribution pipeline.
- This process is required for quality assurance and control process
- We are still in the process working with the Vocabulary Team, so consider this just for reference.
- If you are interested in loading the vocabulary, please contact the Vocabulary Team.

Contact the Vocabulary Team

or

Vocabulary WG meeting.

Prerequisites

- PostgreSQL database (plpython3u, plpgsql extensions)
- Preparation Schemas: sources, dev_xyz, devv5
- Copies of tables, fully indexed (downloaded from Athena and put into Schema dev_xyz, devv5)

Process

- 1. Run *load_stage.sql* in the *dev_xyz* schema
- 2. QA/QC part 1
- 3. Generic update
- 4. QA/QC part 2 : semi-automatic process

Prerequisites

- PostgreSQL database (plpython3u, plpgsql extensions)
- Preparation Schemas: sources, dev_xyz, devv5
- Copies of tables, fully indexed (downloaded from Athena and put into Schema dev_xyz, devv5)

Process

- 1. Run *load_stage.sql* in the *dev_xyz* schema
- 2. QA/QC part 1
- 3. Generic update
- 4. QA/QC part 2 : semi-automatic process

Prerequisites

- PostgreSQL database (plpython3u, plpgsql extensions)
- Preparation Schemas : *sources*, *dev_xyz*, *devv5*
- Copies of tables, fully indexed (downloaded from Athena and put into Schema dev_xyz, devv5)

-- Install the extensions

CREATE EXTENSION plpython3u;

CREATE EXTENSION plpgsql;

-- Check the list of extensions

SELECT * FROM pg_extension;

Prerequisites

- PostgreSQL database (plpython3u, plpgsql extensions)
- Preparation Schemas: sources, dev_xyz, devv5
- Copies of tables, fully indexed (downloaded from Athena and put into Schema dev_xyz, devv5)

Schema sources

• Put your source vocabulary

Schema dev_xyz

- Set as Working directory
- Run DevV5_DDL.sql to create empty tables
- Put copy of vocabularies downloaded from Athena

Schema *devv5*

- Reference Schema of Working directory
- Run DevV5_DDL.sql to create empty tables
- Put copy of vocabularies downloaded from Athena

Prerequisites

- PostgreSQL database (plpython3u, plpgsql extensions)
- Preparation Schemas: sources, dev_xyz, devv5
- Copies of tables, fully indexed (downloaded from Athena and put into Schema dev_xyz, devv5)

Prerequisites

- PostgreSQL database (plpython3u, plpgsql extensions)
- Preparation Schemas: sources, dev_xyz, devv5
- Copies of tables, fully indexed (downloaded from Athena and put into Schema dev_xyz, devv5)

Prerequisites

- PostgreSQL database (plpython3u, plpgsql extensions)
- Preparation Schemas: sources, dev_xyz, devv5
- Copies of tables, fully indexed (downloaded from Athena and put into Schema dev_xyz, devv5)

- 1. Run *load_stage.sql* in the *dev_xyz* schema
- 2. QA/QC part 1
- 3. Generic update
- 4. QA/QC part 2 : semi-automatic process

Prerequisites

- PostgreSQL database (plpython3u, plpgsql extensions)
- Preparation Schemas : *sources*, *dev_xyz*, *devv5*
- Copies of tables, fully indexed (downloaded from Athena and put into Schema dev_xyz, devv5)

- 1. Run *load_stage.sql* in the *dev_xyz* schema
- 2. QA/QC part 1
- 3. Generic update
- 4. QA/QC part 2 : semi-automatic process

- 1. Run load_stage.sql in the dev_xyz schema
 - If load_stage references devv5 or sources, replace them with the names of your schema
 - Run function Vocabulary_pack.SetLatestUpdate.sql

- 1. Run load_stage.sql in the dev_xyz schema
 - If load_stage references devv5 or sources, replace them with the names of your schema
 - Run function Vocabulary_pack.SetLatestUpdate.sql
 - Run supporting functions to stage tables

- 1 You should download function queries you need
 - 3 Run query
- 4 If you've done it correctly, it should be contained within the vocabulary_pack schema functions

Process

2. QA/QC part 1

- As a result of previous step, you will populate stage tables
 (concept_stage, concept_relationship_stage, concept_synonym_stage, etc)
- Run qa_tests.check_stage_tables () in create_qa_tests.sql

This function performs conformance checks and should return no errors.

- If the concept is valid, check valid_end_date = 12/31/2099
- Filed length does not exceed limits in the standard DDL
 - There are no duplicates
 - Vocabulary_id exist in VOCABULARY table

Process

3. Generic update

- This function integrates the content of the _stage tables into basic tables and assigns concept_ids.
- If you execute this function, you can inspect CONCEPT and CONCEPT_RELATIONSHIP

```
CREATE OR REPLACE FUNCTION devv5.GenericUpdate (
)

RETURNS void AS

$BODY$

BEGIN

--1. Prerequisites:
--1.1 Check vocabulary table, at least one vocabulary must

PERFORM FROM vocabulary WHERE latest_update IS NOT NULL LII

IF NOT FOUND THEN

RAISE EXCEPTION 'At least one vocabulary must hav

USING HINT = 'Forgot to execute SetLat

END IF;

--1.2 Check stage tables for incorrect rows

DO $$
```

If you need to modify your scripts or stage tables, you will need to clean stage tables and revert basic tables.

You can easily erase all changes using fast_recreate_schema.sql

Process

- 4. QA/QC part 2 : semi-automatic process
 - Execute get_checks to check the compliance of resulting basic tables to the OMOP rules
 - Check high-level statistics
 - Run manual_checks_after_generic to review manually

* This query is very heavy
It may take a long time to execute.

Process

- 4. QA/QC part 2 : semi-automatic process
 - Execute get_checks to check the compliance of resulting basic tables to the OMOP rules
 - Check high-level statistics
 - Run manual_checks_after_generic to review manually

You can use other functions from the folder,

Vocabulary-v5.0/working/packages/QA TESTS

- 4. QA/QC part 2 : semi-automatic process
 - Execute get_checks to check the compliance of resulting basic tables to the OMOP rules
 - Check high-level statistics
 - Run manual_checks_after_generic to review manually

Upcoming OHDSI/OMOP Events in APAC

- 2 events coming up in April in Japan and Thailand
- Japan: Half-day event with lectures, discussions and a hands-on session
- Thailand: Full-day event with lectures and an introductory tutorial

OHDSI/OMOP Event in Japan

Date: April 17, 2024

Venue: National Cancer Center Hospital, Tsukiji, Tokyo

Tentative Agenda

Time	Topic	Speaker
13:00 – 13:20	OMOP and OHDSI Japan Introduction	Tatsuo Hiramatsu
13:20 – 13:30	Generating RWD/RWE in OHDSI APAC using the OMOP CDM	Mui Van Zandt
13:30 – 14:00	Ongoing initiatives in Japan	OHDSI Japan Collaborators
14:00 – 15:00	Why federated (network) studies within a country?: the OHDSI UK Studyathon experience	Dani Prieto-Alhambra
15:00 – 15:45	Discussion between Dani and biostatisticians in Japan	
15:45 – 16:00	Open Q&A with audience	
16:00 – 16:30	Break	
16:30 – 19:30	Hands-on session: Replication of Association of Ticagrelor vs Clopidogrel With Net Adverse Clinical Events in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention	Seng Chan You

Registrations open at https://odjpn.doorkeeper.jp/events/171041!

OHDSI/OMOP Event in Thailand

Date: April 24, 2024

Venue: Eastin Grand Hotel Phayathai, Bangkok

Tentative Agenda

Time	Topic	Speaker
09:10 - 09:30	Trends in RWD/RWE and data standardization	Mui Van Zandt
09:30 - 09:50	European OMOP initiatives	Sarah Seager
09:50 - 10:10	Local perspectives and considerations on RWD/RWE	KOL from Thailand
10:10 - 10:30	Lessons learned adopting OHDSI/OMOP in Thailand	Natthawut Adulyanukosol
10:30 – 10:50	Break	
10:50 – 11:50	OHDSI/OMOP Introduction	Sarah Seager
11:50 – 13:30	Lunch	
13:30 – 14:45	OMOP CDM and Vocabulary + Vocabulary mapping exercises	Mui Van Zandt/Gyeol Song
14:45 – 15:00	Break	
15:00 – 16:30	OMOP Conversion Process + ETL exercises	Mui Van Zandt/Gyeol Song
16:30 – 17:00	Closing & Networking	

Thank you!